tim GTLN cua bthuc sau
a) A=-x2+6x-15
b) B=-2x2+8x-15
giup vs ,su dung hang dang thuc ht nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=x^2-6x+11\)
\(=x^2-2.3.x+9+2\)
\(=\left(x-3\right)^2+2\)
Ta có: \(\left(x-3\right)^2\ge0\Leftrightarrow\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)
Vậy \(MinA=3\Leftrightarrow x=3\)
b, \(B=2x^2+10x-1\)
\(=2\left(x^2+5x\right)-1\)
\(=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)-\frac{21}{4}\)
\(=2\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\)
Ta có: \(\left(x+\frac{5}{2}\right)^2\ge0\Leftrightarrow\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(MinB=-\frac{21}{4}\Leftrightarrow x=-\frac{5}{2}\)
c, \(C=5x-x^2\)
\(=-x^2+5x\)
\(=-\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{25}{4}\)
\(=-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\)
Ta có: \(-\left(x+\frac{5}{2}\right)^2\le0\Leftrightarrow-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(MaxB=\frac{25}{4}\Leftrightarrow x=-\frac{5}{2}\)
\(A=-3x^2+6x-7=-3\left(x^2-2x+1-1\right)-7\)
\(=-3\left(x-1\right)^2-4\le-4\)Dấu ''='' xảy ra khi x = 1
\(B=-2x^2+5x+1=-2\left(x^2-\dfrac{5}{2}x\right)+1\)
\(=-2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}-\dfrac{25}{16}\right)+1\)
\(=-2\left(x-\dfrac{5}{4}\right)^2+\dfrac{33}{8}\le\dfrac{33}{8}\)Dấu ''='' xảy ra khi x = 5/4
C;D chỉ có GTNN thôi bạn nhé \(C=2x^2-8x+13=2\left(x^2-4x+4-4\right)+13\)
\(=2\left(x-2\right)^2+5\ge5\)Dấu ''='' xảy ra khi x = 2
\(D=x^2-3x+5=x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}+5\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)Dấu ''='' xảy ra khi x = 3/2
d: Ta có: \(D=x^2-3x+5\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
Bài 3:
b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
( 3x - 1 )2 - 16
= ( 3x - 1 )2 - 42
= ( 3x - 1 - 4 )( 3x - 1 + 4 )
= ( 3x - 5 )( 3x + 3 )
= 3( 3x - 5 )( x + 1 )
a) \(-y^2+\dfrac{1}{9}\)
\(=-\left(y^2-\left(\dfrac{1}{3}\right)^2\right)\)
\(=-\left(y+\dfrac{1}{3}\right)\left(y-\dfrac{1}{3}\right)\)
b) \(4^4-256\)
\(=4^4-4^4\)
\(=0\)
- Đa dạng về số lượng loài: Thực vật có số lượng loài rất lớn
- Sự đa dạng về môi trường sống:
+ Rừng rậm
+ Thảo nguyên
+ Sa mạc khô nóng
- Đa dạng thực vật là sự phong phú về các loài, các cá thể của loài và môi trường sống của chúng.
Được biểu hiện và thể hiện bằng:
- Số lượng các loài và số lượng các cá thể của loài.
- Sự đa dạng của môi trường sống.
+ Băng tuyết
\(A=-x^2+6x-15\)
\(A=-x^2+2.3x-9-6\)
\(\Rightarrow-A=x^2-2.3x+9+6\)
\(-A=\left(x^2-2.3.x+3^2\right)+6\)
\(-A=\left(x-3\right)^2+6\)
\(\Rightarrow A=-\left(x-3\right)^2-6\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2-6\le-6\forall x\)
\(A=-6\Leftrightarrow-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Amax =-6\(\Leftrightarrow\)x=3
\(B=-2x^2+8x-15\)
\(-2B=4x^2-16x+30\)
\(-2B=\left[\left(2x\right)^2-2.2x.4+4^2\right]+14\)
\(-2B=\left(2x-4\right)^2+14\)
\(\Rightarrow B=-\frac{\left(2x-4\right)^2}{2}-7\)
Ta có: \(-\frac{\left(2x-4\right)^2}{2}\le0\forall x\)
Đến đây b làm tương tự như trên nhé.
Chúc b học tốt
a) \(A=-x^2+6x-15\)
\(-A=x^2-6x+15\)
\(-A=\left(x^2-6x+9\right)+6\)
\(-A=\left(x-3\right)^2+6\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge6\)
\(\Leftrightarrow A\le-6\)
Dấu "=" xảy ra khi :
\(x-3=0\Leftrightarrow x=3\)
Vậy \(A_{Max}=-6\Leftrightarrow x=3\)