tim x biet
(x+2)2+(x-3)2-2(x-1)(x+1)=9
su dung hang dang thuc nhe
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
aVT=.\(\left(a+b+c\right)^2+a^2+b^2+c^2\)
=\(a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)
=\(2a^2+2b^2+2c^2+2ab+2ac+2bc\)
VP=\(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2\)=\(a^2+2ab+b^2+b^2+2bc+b^2+a^2+2ac+c^2\)
=\(2a^2+2b^2+2c^2+2ab+2bc+2ac\)
Vậy VT=VP
a)\(\text{(a+b+c)^2 +a^2+b^2+c^2=(a+b)^2+(b+c)^2+(c+a)^2}\)
Ta có:
\(\left(a+b+c\right)^2+a^2+b^2+c^2=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
b) Câu b sao chỉ có một vế vậy , hằng đẳng thức thì phải có hai vế chứ
a) \(-y^2+\dfrac{1}{9}\)
\(=-\left(y^2-\left(\dfrac{1}{3}\right)^2\right)\)
\(=-\left(y+\dfrac{1}{3}\right)\left(y-\dfrac{1}{3}\right)\)
b) \(4^4-256\)
\(=4^4-4^4\)
\(=0\)
a:
ĐKXĐ: x<>2
|2x-3|=1
=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Thay x=1 vào A, ta được:
\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)
b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)
\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)
\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)
c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)
\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)
Để P lớn nhất thì \(\dfrac{2}{x-2}\) max
=>x-2=1
=>x=3(nhận)
a) 16x2-(x2+4)2= (4x)2-(x2+4)2
= (4x-x2-4)(4x+x2+4)
\(\text{b) 27x^3-54x^2+36x-8=[(3x)^3-3.(3x)^2.2+3.3x.2^2-2^3}]\)
= (3x-2)3
\(\text{c) (x+y)^3 - (x-y)^3= (x+y-x+y)[(x+y)^2+(x+y)(x-y)+(x-y)^2]}\)
=2y(x2+2xy+y2+x2-y2+x2-2xy+y2)
= 2y(3x2+y2)
1.(x-2)3-(x-1)2=x3-x2.2+x.22-23=x3-2x2+4x-8.
2.(x+3)2-(x-3)3=x2+2.x.3+32-(x3-x2.3+x.32-33)=x2+6x+9-(x3-3x2+9x-27)=x2+6x+9-x3+3x2-9x+27=4x2-3x-x3+26
3.(x2-2)2-(x2-3)2=x4-2.x2.2+22-(x4-2.x2.3+32)=x4-4x2+2-x4+6x2-9=2x2-7.
Chúc bạn học tốt!!!
Theo bài ra ta có:
|x+\(\frac{1}{2}\)|\(\ge\)0
|x+\(\frac{1}{6}\)|\(\ge\)0
............................
|x+\(\frac{1}{110}\)|\(\ge\)0
\(\Rightarrow\)|x+\(\frac{1}{2}\)|+|x+\(\frac{1}{6}\)|+...+|x+\(\frac{1}{110}\)|\(\ge\)0
\(\Rightarrow\)11.x\(\ge\)0
\(\Rightarrow\)x\(\ge\)0
\(\Rightarrow\)x dương.
Khi đó:|x+\(\frac{1}{2}\)|+|x+\(\frac{1}{6}\)|+...+|x+\(\frac{1}{110}\)|=11.x
\(\Rightarrow\)x+\(\frac{1}{2}\)+x+\(\frac{1}{6}\)+...+x+\(\frac{1}{110}\)=11.x
\(\Rightarrow\)27.x+\(\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)\)=11x
\(\Rightarrow\)\(\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)\)=-16x
\(\Rightarrow\)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\)=-16x
\(\Rightarrow\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)=-16x
\(\Rightarrow\)\(\frac{10}{11}\)=-16x
\(\Rightarrow\)\(\frac{10}{-176}=x\)
Vậy \(x=\frac{10}{-176}\).
12/
x=2011
=>2012=x+1
thay x+1=2012 ta được:
x2011-(x+1).x2010+(x+1).x2009-(x+1)x2008+...-(x+1).x2+(x+1).x-1
=x2011-x2011-x2010+x2010+x2009-x2009-x2008+...-x3-x2+x2+x-1
=x-1
thay x=2011 ta được:
2011-1=2010
Vậy x2011-2012x2010+2012x2009-2012x2008+...-2012x2+2012x-1=2010
......................?
mik ko biết
mong bn thông cảm !$$%
\(\left(x+2\right)^2+\left(x-3\right)^2-2\left(x-1\right)\left(x+1\right)=9\)
<=> \(x^2+2x+4+x^2-6x+9-2\left(x^2-1\right)=9\)
<=> \(2x^2-4x+13-2x^2+2=9\)
<=> \(-4x+15-9=0\)
<=> \(-4x+6=0\)
<=> \(4x=6\)
<=> \(x=\frac{3}{2}\)