K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2018

Ai trả lời đúng và nhanh kết bạn fb mk tặng thẻ nạp đt 20k nha

22 tháng 6 2018

\(x^2-3x+5=x^2-2x\) x \(\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+5\)

                            \(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\) \(>0\)với mọi \(x\)

\(4x^2+5x+12=\left(2x\right)^2+2\) x  \(2x\)x\(\frac{5}{4}+\frac{25}{16}-\frac{25}{16}+12\)

                                 \(=\left(2x+\frac{5}{4}\right)^2\)\(+\frac{167}{16}>0\)với mọi  \(x\)

\(3x^2-9x+14=\) \(3\)\(\left(x^2-3x+\frac{14}{3}\right)\)

                                \(=3\left(x^2-2xX\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+14\right)\)

                                 = 3 { \(\left(x-\frac{3}{2}\right)^2+\frac{47}{4}\)\(>0\)

x,  X là nhân nha

3 tháng 5 2021

\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)

Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2 

\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)

\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)

\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6 

3 tháng 5 2021

\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)

\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2 

\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)

\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4 

22 tháng 9 2021

m đâu ????

22 tháng 9 2021

\(1,\\ A=\left(4x^2+y^2\right)\left(4x^2-y^2\right)=16x^4-y^4\)

Đề sai, biểu thức A ko có m thì sao chứng minh?

\(2,\) Gọi 2 số nguyên lt là \(a;a+1\left(a\in Z\right)\)

Ta có \(a+1-a=1\) là số lẻ (đpcm)

\(3,P=9x^2+24x+16-10x-x^2+16=8x^2+14x+32\)

\(4,Q=x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow x-2=0\Leftrightarrow x=2\)

9 tháng 5 2022

`a)` Cho `3x+6=0`

`=>3x=-6`

=>x=-2`

Vậy nghiệm của đa thức là `x=-2`

`b)` Cho `2x^2-3x=0`

`=>x(2x-3)=0`

`@TH1:x=0`

`@TH2:2x-3=0=>2x=3=>x=3/2`

Vậy nghiệm của đa thức là `x=0` hoặc `x=3/2`

____________________________________________

Câu `2:`

Vì `(x+1)^2 >= 0 AA x`

`=>2(x+1)^2 >= 0 AA x`

`=>2(x+1)^2-5 >= -5 AA x`

   Hay `A >= -5 AA x`

Dấu "`=`" xảy ra khi `(x+1)^2=0=>x+1=0=>x=-1`

Vậy `GTN N` của `A` là `-5` khi `x=-1`

9 tháng 5 2022

Câu 1: 
  a, Cho 2x+6=0
             2x     = 0-6=-6
               x     = -6 :2=-3
Vậy đa thức trên có nghiệm là x=-3
b, Cho đa thức 2x2-3x=0
                         2xx-3x=0
                       x(2x-3x)=0
                    1,x=0
                    2,2x-3x=0
        x(2-3)=0
        -x      =0
        =>x=0
Vậy đa thức tên có nghiệm là x=0
Câu 2:
Để đa thức A có giá trị nhỏ nhất thì 2(x+1)2-5 phải bé nhất; 
                                                   mà 2(x-1)2≥0
Dấu bằng chỉ xuất hiện khi và chỉ khi :
2(x-1)2=0
  (x-1)2=0:2=0=02
=>x-1=0
    x   =0+1=1
=> A = 2(1-1)2-5
     A =2.0-5
     A 0-5 =-5
Vậy A có giá trị bé nhất là -5 với x= 1
  

15 tháng 12 2017

mk thấy bài 1 phải là ko phụ thuộc vào biến x chứ

15 tháng 12 2017

bài 2 

a= -30

16 tháng 6 2017

Bài 1:

a) \(6x\left(3x+15\right)-2x\left(9x-2\right)=17\) (1)

\(\Leftrightarrow18x^2+90x-18x^2+4x=17\)

\(\Leftrightarrow94x=17\)

\(\Leftrightarrow x=\dfrac{17}{94}\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{17}{94}\right\}\)

b) \(\left(15x-2x\right)\left(4x+1\right)-\left(13x-4x\right)\left(2x-3\right)-\left(x-1\right)\left(x+2\right)+x+2=52\)

\(\Leftrightarrow\left(60x^2+15x-8x^2-2x\right)-\left(26x^2-39x-8x^2+12x\right)-\left(x^2+2x-x-2\right)+x+2=52\)

\(\Leftrightarrow60x^2+15x-8x^2-2x-26x^2+39x+8x^2-12x-x^2-2x+x+2+x+2=52\)

\(\Leftrightarrow33x^2+40x+4=52\)

\(\Leftrightarrow33x^2+40x=48\)

...

17 tháng 6 2017

Bài 1 có ng làm rồi nên mình không làm nx nhé.

2) a) Rút gọn

P=\(3x\left(4x+1\right)+5x^2-4x\left(3x+9\right)+x\left(5x-5x^2\right)\)

P= \(12x^2+3x+5x^3-12x^3-36x+5x^2-5x^3\)

P= \(-33x\)

b) |x| = 2

\(\Rightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Với x = 2 \(\Rightarrow\) P = -33 . 2 = -66

Với x = -2 \(\Rightarrow\) P = -33 . (-2) = 66

c) Để P = 2017 \(\Rightarrow\) -33x = 2017 \(\Rightarrow\) x = \(-\dfrac{2017}{33}\)

Bài 3: Giải

f(x) = \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

f(x) = \(\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

f(x) = \(\left(x^2+5x\right)^2-6^2\) ( Hằng đẳng thức số 3 )

f(x) = \(\left(x^2+5x\right)^2-36\ge-36\) với mọi x

Vậy \(Min_{f\left(x\right)}\) = -36 khi x = 0 hoặc x = -5

15 tháng 12 2017

Chứng minh giá trị của biểu thức A không phụ thuộc vào biến x 

1) A= (3x-5)(2x+11)-(2x+3)(3x+7)

A = 6x2 -10x +33x -55 - (6x2 +9x +14x +21)

A = 6x2 -10x +33x -55 - 6x2 - 9x - 14x - 21

A = -76

Vậy A không phụ thuộc vào biến x

2) tìm số nguyên a hay số thực bạn xem lại đầu bài nhé

3) tìm giá trị nhỏ nhất của biểu thức A = 4x2 -8x +2017 

A = 4x2 -8x +2017  = (2x)2 -2.2x.2 +22 +2015 = (2x-2)2 +2015

Ta có (2x-2)2 luôn lớn hơn hoặc bằng 0 nhỏ nhất là bằng 0

vậy A = (2x-2)2 +2015  nhỏ nhất là bằng 2015 khi và chỉ khi 2x-2 = 0    <=>   x = 1