K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

\(x\left(x-2\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy x =0 hoặc 2

21 tháng 6 2018

Ta có : \(x\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy x = 0 hoặc x = 2

11 tháng 1 2023

\(8,1-\left(x-6\right)=4\left(2-2x\right)\)

\(\Leftrightarrow1-x+6=8-8x\)

\(\Leftrightarrow-x+8x=8-1-6\)

\(\Leftrightarrow7x=1\)

\(\Leftrightarrow x=\dfrac{1}{7}\)

\(9,\left(3x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)

\(10,\left(x+3\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)

 

11 tháng 1 2023

`8)1-(x-5)=4(2-2x)`

`<=>1-x+5=8-6x`

`<=>5x=2<=>x=2/5`

`9)(3x-2)(x+5)=0`

`<=>[(x=2/3),(x=-5):}`

`10)(x+3)(x^2+2)=0`

  Mà `x^2+2 > 0 AA x`

 `=>x+3=0`

`<=>x=-3`

`11)(5x-1)(x^2-9)=0`

`<=>(5x-1)(x-3)(x+3)=0`

`<=>[(x=1/5),(x=3),(x=-3):}`

`12)x(x-3)+3(x-3)=0`

`<=>(x-3)(x+3)=0`

`<=>[(x=3),(x=-3):}`

`13)x(x-5)-4x+20=0`

`<=>x(x-5)-4(x-5)=0`

`<=>(x-5)(x-4)=0`

`<=>[(x=5),(x=4):}`

`14)x^2+4x-5=0`

`<=>x^2+5x-x-5=0`

`<=>(x+5)(x-1)=0`

`<=>[(x=-5),(x=1):}`

26 tháng 12 2021

a) \(\Rightarrow\dfrac{1}{3}x\left(x-2\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow\left(x+5\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)

c) \(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

e) \(\Rightarrow\left(x+2\right)\left(x+2-x+2\right)=0\Rightarrow\left(x+2\right).4=0\Rightarrow x=-2\)

f) \(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)

g) \(\Rightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left(3x-2\right)\left(3x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)

h) \(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

i) \(\Rightarrow4x\left(x+1\right)+5\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(4x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{4}\end{matrix}\right.\)

15 tháng 10 2023

a: 78x(x-97)-x+97=0

=>(x-97)(78x-1)=0

=>\(\left[{}\begin{matrix}x=97\\x=\dfrac{1}{78}\end{matrix}\right.\)

b: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)

=>\(x\left(x-2\right)\left(x+2\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

c: \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)

=>\(x^2+4x+4-x^2+4=0\)

=>4x+8=0

=>x+2=0

=>x=-2

15 tháng 10 2023

\(a,78x\left(x-97\right)-x+97=0\)

\(\Leftrightarrow78x\left(x-97\right)-\left(x-97\right)=0\)

\(\Leftrightarrow\left(x-97\right)\left(78x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-97=0\\78x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=97\\x=\dfrac{1}{78}\end{matrix}\right.\)

\(b,\dfrac{2}{3}x\left(x^2-4\right)=0\)

\(\Leftrightarrow\dfrac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=0\\x-2=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

\(c,\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[\left(x+2\right)-\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+2-x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\cdot4=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

AH
Akai Haruma
Giáo viên
10 tháng 1 2022

Lời giải:

a. Đặt $x^2-2x=a$ thì pt trở thành:

$a^2+3a+2=0$

$\Leftrightarrow (a+1)(a+2)=0$

$\Leftrightarrow a+1=0$ hoặc $a+2=0$

$\Leftrightarrow x^2-2x+1=0$ hoặc $x^2-2x+2=0$

Nếu $x^2-2x+1=0\Leftrightarrow (x-1)^2=0\Leftrightarrow x=1$
Nếu $x^2-2x+2=0\Leftrightarrow (x-1)^2=-1<0$ (vô lý)

Vậy pt có nghiệm duy nhất $x=1$

b.

Đặt $x^2+x=a$ thì pt trở thành:

$a(a-4)+4=0$

$\Leftrightarrow a^2-4a+4=0$

$\Leftrightarrow (a-2)^2=0$

$\Leftrightarrow a-2=0$

$\Leftrightarrow x^2+x-2=0$

$\Leftrihgtarrow (x-1)(x+2)=0$

$\Rightarrow x=1$ hoặc $x=-2$

5 tháng 9 2021

a. (x - 22) - 1 = 0

<=> x - 4 - 1 = 0

<=> x = 5

b. 4 - (x - 2)2 = 0

<=> 22 - (x - 2)2 = 0

<=> (2 - x + 2)(2 + x - 2) = 0

<=> x(4 - x) = 0

<=> \(\left[{}\begin{matrix}x=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

 

5 tháng 9 2021

d. (3x - 2)2 - (2x + 3)2 = 5(x + 4)(x - 4)

<=> (3x - 2 - 2x - 3)(3x - 2 + 2x + 3) = 5(x2 - 16)

<=> (x - 5)(5x + 1) = 5x2 - 80

<=> 5x2 + x - 25x - 5 = 5x2 - 80

<=> 5x2 - 5x2 + x - 25x = -80 + 5

<=> -24x = -75

<=> x = \(\dfrac{25}{8}\)

22 tháng 12 2020

Rảnh rỗi thật sự .-.

undefined

7 tháng 7 2023

\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-5-x-1\right)\left(2x-5+x+1\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\3x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(S=\left\{6;\dfrac{4}{3}\right\}\)

\(10,\left(x+3\right)^2-x^2=45\)

\(\Leftrightarrow x^2+6x+9-x^2-45=0\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=6\)

Vậy \(S=\left\{6\right\}\)

\(11,\left(5x-4\right)^2-49x^2=0\\ \Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\\ \Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(S=\left\{-2;\dfrac{1}{3}\right\}\)

\(12,16\left(x-1\right)^2-25=0\\ \Leftrightarrow4^2\left(x-1\right)^2-5^2=0\\ \Leftrightarrow\left[4\left(x-1\right)\right]^2-5^2=0\\ \Leftrightarrow\left(4x-4\right)^2-5^2=0\\ \Leftrightarrow\left(4x-4-5\right)\left(4x-4+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-9=0\\4x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{1}{4};\dfrac{9}{4}\right\}\)

26 tháng 9 2021

Để \(\left(x^2-20\right)\left(x^2-15\right)\left(x^2-10\right)\left(x^2-5\right)< 0\)

Thì phải có một sốâm và 3 số dương hoặc 1 số dương và 3 số âm

Mà \(x^2\ge0\forall x\)

\(\Rightarrow x^2-20< x^2-15< x^2-10< x^2-5\)

+ Với TH có 1 số âm và 3 số dương:

\(\Rightarrow\left\{{}\begin{matrix}x^2-20< 0\\x^2-15>0\end{matrix}\right.\)\(\Leftrightarrow15< x^2< 20\Leftrightarrow x^2=16\Leftrightarrow x=\pm4\)

+ Với TH có 1 số dương và 3 số âm:

\(\Rightarrow\left\{{}\begin{matrix}x^2-10< 0\\x^2-5>0\end{matrix}\right.\)\(\Leftrightarrow5< x^2< 10\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)

Vậy \(S=\left\{\pm3;\pm4\right\}\)

6 tháng 1 2023

\(\left(x-2\right)^2-\left(x+1\right)\left(x-1\right)=0\\ =>x^2-4x+4-x^2+1=0\\ =>-4x+5=0\\ =>-4x=-5\\ =>x=\dfrac{5}{4}\)

6 tháng 1 2023

`(x-2)^2 -(x+1)(x-1)=0`

`<=> (x^2-4x+4)-(x^2-x+x-1)=0`

`<=> x^2-4x+4-x^2+x-x+1=0`

`<=> -4x +5=0`

`<=>-4x=-5`

`<=>x=5/4`