K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2019

\(2a-ab+b=0\)

\(\Rightarrow a\left(2-b\right)+\left(2-b\right)=2-0\)

\(\Rightarrow\left(a-1\right)\left(2-b\right)=2\)

\(\Rightarrow\left(a-1\right);\left(2-b\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Ta có các trường hợp sau:

\(TH1:\hept{\begin{cases}a-1=1\\2-b=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\b=0\end{cases}}}\)

\(TH2:\hept{\begin{cases}a-1=-1\\2-b=-2\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=4\end{cases}}}\)

\(TH3:\hept{\begin{cases}a-1=2\\2-b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=3\\b=1\end{cases}}}\)

\(TH4:\hept{\begin{cases}a-1=-2\\2-b=-1\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=3\end{cases}}}\)

Vậy............................

10 tháng 1 2024

loading...

12 tháng 11 2016

a/ Nếu (a + b) < 0 thì bất  đẳng thức đúng

Với (a + b) \(\ge0\)thì ta có

\(2a^2+ab+2b^2\ge\frac{5}{4}\left(a^2+2ab+b^2\right)\)

\(\Leftrightarrow3a^2-6ab+3b^2\ge0\)

\(\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)

12 tháng 11 2016

b/ Áp dụng BĐT BCS : 

\(1=\left(1.\sqrt{a}+1.\sqrt{b}+1.\sqrt{c}\right)^2\le3\left(a+b+c\right)\Rightarrow a+b+c\ge\frac{1}{3}\)

Áp dụng câu a/ :

\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)

\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\)

\(\sqrt{2c^2+ac+2a^2}\ge\frac{\sqrt{5}}{2}\left(a+c\right)\)

\(\Rightarrow P\ge\frac{\sqrt{5}}{2}.2\left(a+b+c\right)\ge\frac{\sqrt{5}}{3}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{9}\)

Vậy min P = \(\frac{\sqrt{5}}{3}\) khi a=b=c=1/9

31 tháng 10 2016

lớp 6 gì kinh thế cái này lớp 8

M=a^3+b^3+ab

M=(a+b)[(a+b)^2-3ab)]+ab=1-2ab 

a+b=1=> b=1-a

M=1-2a(1-a)=1+2a^2-2a

M=2.[(a^2-a+1/2)]+1

-=2(a-1/2)^2+1/2

GTLN của M=1/2 khi a=b=1/2

DD
9 tháng 5 2021

\(F=a^3+b^3+ab\left(a+b\right)+2a+b+\frac{3}{a}+\frac{2}{b}\)

\(F=\left(a+b\right)^3-3ab\left(a+b\right)+ab\left(a+b\right)+a+b+a+\frac{1}{a}+\frac{2}{a}+\frac{2}{b}\)

\(F=8-4ab+2+a+\frac{1}{a}+\frac{2}{a}+\frac{2}{b}\)

Ta có: \(\left(a+b\right)^2\ge4ab\Leftrightarrow-4ab\ge-\left(a+b\right)^2=-4\)

\(a+\frac{1}{a}\ge2\sqrt{a.\frac{1}{a}}=2\)

\(\frac{2}{a}+\frac{2}{b}\ge\frac{8}{a+b}=4\)

Suy ra \(F\ge8-4+2+2+4=12\)

Dấu \(=\)xảy ra khi \(a=b=1\).

16 tháng 12 2018

a) \(a^2+b^2+1\ge ab+a+b\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra <=> a=b=1.

b) \(a^2-2a+6b+b^2=-10\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+6b+9\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+3\right)^2=0\). Mà \(\left(a-1\right)^2\ge0;\left(b+3\right)^2\ge0\forall a;b\)

Nên \(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-3\end{cases}}}\). KL: ...

AH
Akai Haruma
Giáo viên
31 tháng 1 2024

Lời giải:

Áp dụng BĐT AM-GM:

\(P=\frac{2a}{\sqrt{a^2+ab+bc+ac}}+\frac{b}{\sqrt{b^2+ab+bc+ac}}+\frac{c}{\sqrt{c^2+ab+bc+ac}}\\ =\frac{2a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)

\(\leq \frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{4(b+c)}+\frac{b}{b+a}+\frac{c}{4(c+b)}+\frac{c}{c+a}\)

\(=(\frac{a}{a+b}+\frac{b}{b+a})+(\frac{a}{a+c}+\frac{c}{a+c})+\frac{1}{4}(\frac{b}{b+c}+\frac{c}{b+c})=1+1+\frac{1}{4}=\frac{9}{4}\)

Vậy $P_{\max}=\frac{9}{4}$

23 tháng 4 2019

Có chắc là GTLN không vậy, làm mãi không ra

24 tháng 4 2019

Có anh ạ, bài này hỏi cả GTLN và GTNN, nhưng hôm trước em gửi câu hỏi trước em chỉ ghi GTNN nên chị Linh Chi đã giải giúp em rồi, giờ em hỏi thêm GTLN nữa.