\(2a^2-b^2=ab\); \(a^3-b^3=4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

1. (a2+b2+ab)2-a2b2-b2c2-c2a2

=a4+b4+a2b2+2(a2b2+ab3+a3b)-a2b2-b2c2-c2a2

=a4+b4+2a2b2+2ab3+2a3b-b2c2-c2a2

=(a2+b2)2+2ab(a2+b2)-c2(a2+b2)

=(a2+b2)[(a+b)2-c2]

=(a2+b2)(a+b+c)(a+b-c)

2. a4+b4+c4-2a2b2-2b2c2-2a2c2=(a2-b2-c2)2

3. a(b3-c3)+b(c3-a3)+c(a3-b3)

=ab3-ac3+bc3-ba3+ca3-cb3

=a3(c-b)+b3(a-c)+c3(b-a)

=a3(c-b)-b3(c-a)+c3(b-a)

=a3(c-b)-b3(c-b+b-a)+c3(b-a)

=a3(c-b)-b3(c-b)-b3(b-a)+c3(b-a)

=(c-b)(a-b)(a2+ab+b2)-(b-a)(b-c)(b2+bc+c2)

=(a-b)(c-b)(a2+ab+2b2+bc+c2)

4. a6-a4+2a3+2a2=a4(a+1)(a-1)+2a2(a+1)=(a+1)(a5-a4+2a2)=a2(a+1)(a3-a2+2)

5. (a+b)3-(a-b)3=(a+b-a+b)[(a+b)2+(a+b)(a-b)+(a-b)2]

=2b(3a2+b2)

6. x3-3x2+3x-1-y3=(x-1)3-y3=(x-1-y)[(x-1)2+(x-1)y+y2]

=(x-y-1)(x2+y2+xy-2x-y+1)

7. xm+4+xm+3-x-1=xm+3(x+1)-(x+1)=(x+1)(xm+3-1)

(Đúng nhớ like nhá !)

26 tháng 5 2017

Minh Hải,Lê Thiên Anh,Nguyễn Huy Tú,Ace Legona,...giúp mk vs mai mk đi hk rùi

7 tháng 12 2017

\(\frac{a-b}{a^2+ab}+\frac{a+b}{a^2-ab}=\frac{3a-b}{a^2-b^2}\)

\(\Leftrightarrow\frac{a-b}{a\left(a+b\right)}+\frac{a+b}{a\left(a-b\right)}=\frac{3a-b}{\left(a-b\right)\left(a+b\right)}\)

\(\Leftrightarrow\frac{\left(a-b\right)^2+\left(a+b\right)^2}{a\left(a-b\right)\left(a+b\right)}=\frac{3a^2-ab}{a\left(a-b\right)\left(a+b\right)}\)

\(\Leftrightarrow a^2-2ab+b^2+a^2+2ab+b^2=3a^2-ab\)

\(\Leftrightarrow2a^2+2b^2=3a^2-ab\)

\(\Leftrightarrow a^2-ab=2b^2\)

\(\Leftrightarrow\left(a^2+ab\right)-\left(2ab+2b^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-2b\right)=0\Rightarrow\orbr{\begin{cases}a=-b\left(l\text{do }\left|a\right|\ne\left|b\right|\right)\\a=2b\left(TM\right)\end{cases}}\)

Thay a = 2b vào B tự tính

B sai đề

7 tháng 12 2017

đề đúng thì b bằng bao nhiêu bạn

28 tháng 6 2017

Phép nhân các phân thức đại số

a: \(x-\dfrac{3a+b}{b}=\dfrac{2a^2-2ab}{b^2-ab}\)

\(\Leftrightarrow x=\dfrac{2a\left(a-b\right)}{b\left(b-a\right)}+\dfrac{3a+b}{b}\)

\(\Leftrightarrow x=-2a+\dfrac{3a+b}{b}=\dfrac{-2ab+3a+b}{b}\)

b: \(x+\left(a+b\right)^2=\dfrac{a^4+b^4}{\left(a-b\right)^2}\)

\(\Leftrightarrow x=\dfrac{a^4+b^4}{\left(a-b\right)^2}-\left(a+b\right)^2\)

\(\Leftrightarrow x=\dfrac{a^4+b^4-\left(a^2-b^2\right)^2}{\left(a-b\right)^2}=\dfrac{a^4+b^4-a^4+2a^2b^2-b^4}{\left(a-b\right)^2}=\dfrac{2a^2b^2}{\left(a-b\right)^2}\)

a: \(=a^2-b^4\)

b: \(=\left(a^2+2a\right)^2-9\)

c: \(=a^2-\left(2a+3\right)^2\)

d: \(=a^4-\left(2a-3\right)^2\)

e: \(=\left(-a^2-2a+3\right)^2\)

g: \(=4a^2-a^4\)

16 tháng 8 2016

\(\frac{2}{3}a^6b^3-a^4b^5\)

 

28 tháng 6 2018

a) \(N=8a^3-27b^3\)

\(=\left(2a\right)^3-\left(3b\right)^3\)

\(=\left(2a-3b\right)^3+18ab\left(2a-3b\right)\)

\(=5^3+18\cdot12\cdot5\)

\(=125+1080=1205\)

b) \(K=a^3+b^3+6a^2b^2\left(a+b\right)+3ab\left(a^2+b^2\right)\)

\(=a^3+b^3+6a^2b^2+3a^3b+3ab^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+2ab+b^2\right)\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a+b\right)^2\)

\(=\left(a+b\right)^3+3ab\left(a+b\right)\left(a+b-1\right)\)

\(=1^3+3ab\cdot1\cdot0\)

\(=1\)

28 tháng 6 2018

a ) \(N=8a^3-27b^3\)

\(\Leftrightarrow N=\left(2a-3b\right)\left(4x^2+6ab+9b^2\right)\)

\(\Leftrightarrow N=5\left(4x^2+9b^2+72\right)\)

Ta có : \(2a-3b=5\)

\(\Leftrightarrow4a^2+9b^2=25+6ab\)

Thay vào ta được : \(N=5\left(25+6ab+72\right)=845\)

b ) \(K=a^3+b^3+6a^2b^2\left(a+b\right)+3ab\left(a^2+b^2\right)\)

\(\Leftrightarrow K=\left(a+b\right)^3-3ab\left(a+b\right)+6a^2b^2\left(a+b\right)+3ab\left(a+b\right)^2-6a^2b^2\)

\(\Leftrightarrow K=1-3ab+6a^2b^2+3ab-6a^2b^2=1\)

c ) \(P=\left(\dfrac{x}{4}\right)^3+\left(\dfrac{y}{2}\right)^3\)

\(\Leftrightarrow P=\left(\dfrac{x}{4}+\dfrac{y}{2}\right)^3-3\left[\left(\dfrac{x}{4}\right)^2\dfrac{y}{2}+\dfrac{x}{4}\left(\dfrac{y}{2}\right)^2\right]\)

\(\Leftrightarrow P=\left(\dfrac{2\left(x+2y\right)}{8}\right)^3-3\left[\dfrac{x^2y}{32}+\dfrac{xy^2}{16}\right]\)

\(\Leftrightarrow P=8-3xy\left(\dfrac{x+2y}{32}\right)\)

\(\Leftrightarrow P=8-3.4\left(\dfrac{8}{32}\right)=5\)