CHO 3 MỆNH ĐỀ
1.a là số nguyên âm
2.a+2/a là số nguyên dương
3.a^2-4a là số nguyên âm
tìm số thực a để trong 3 mệnh đề có 1 mệnh đề sai và 2 mệnh đề còn lại đúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-G/s mệnh đề 1,2 đúng.
\(\Rightarrow A+41\) có chữ số tận cùng là 2 \(\Rightarrow\)A không thể là số chính phương
\(\Rightarrow\)vô lý.
-G/s mệnh đề 2,3 đúng.
\(\Rightarrow A-48\) có chữ số tận cùng là 3 \(\Rightarrow\)A không thể là số chính phương
\(\Rightarrow\)vô lý
\(\Rightarrow\)Mệnh đề 1,3 đúng.
-Đặt \(A+41=a^2;A-48=b^2\) (a, b là các tự nhiên khác 48).
\(\Rightarrow a^2-b^2=\left(A+41\right)-\left(A-48\right)=89\)
\(\Rightarrow\left(a-b\right)\left(a+b\right)=1.89\)
-Vì a,b là các số tự nhiên, a-b<a+b và 89 là số nguyên tố.
\(\Rightarrow a-b=1;a+b=89\Rightarrow a=45;b=44\)
-Vậy A=\(45^2-41=1984\)
đuối rồi :))
Đáp án là C. Ta có a,b∈N* không suy ra a -1, b -1∈N* . Do vậy không áp dụng được giả thiết quy nạp cho cặp {a -1, b -1}.
Chú ý: nêu bài toán trên đúng thì ta suy ra mọi số tự nhiên đều bằng nhau. Điều này là vô lí.
khi a = 3
thì mệnh đề 1 và 3 đúng
còn mệnh đề 2 sai
còn .................................