2+4+6+8+...2018 (Tính) Help me ~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-3+5-7+......-2019+2021-2023\)
\(A=\left(1-3\right)+\left(5-7\right)+....+\left(2021-2023\right)\)
\(A=-2+\left(-2\right)+....+\left(-2\right)\left(506 cặp\right)\)
\(A=-2.506\)
\(A=-1012\)
*) A=(1-3)+(5-7)+....+(2021-2023)
<=> A=-2+(-2)+...+(-2)
Dãy A có (2023-1):2+1=1012 số số hạng
=> Có 506 số (-2)
=> A=(-2).506=-1012
Tính giá trị của đa thức sau biết x=2018
N=x^6-2017x^5-2017x^4-2017x^3-2017x^2-2017x-2017
Help me :(((
Ta có : x - 1 = 2018 - 1 = 2017
N = x6 - 2017x5 - 2017x4 - 2017x3 - 2017x2 - 2017x - 2017
N = x6 - ( x - 1 ).x5 - ( x - 1 ).x4 - ( x - 1 ).x3 - ( x - 1 ).x2 - ( x - 1 ).x - ( x - 1 )
N = x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - x + 1
N = 1
a) \(\dfrac{5}{6}-\dfrac{2}{14}\)
\(=\dfrac{5}{6}-\dfrac{1}{7}\)
\(=\dfrac{35}{42}-\dfrac{6}{42}\)
\(=\dfrac{29}{42}\)
b) \(\dfrac{5}{20}-\dfrac{1}{6}\)
\(=\dfrac{1}{4}-\dfrac{1}{6}\)
\(=\dfrac{3}{12}-\dfrac{2}{12}\)
\(=\dfrac{1}{12}\)
c) \(\dfrac{5}{9}-\dfrac{3}{12}\)
\(=\dfrac{5}{9}-\dfrac{1}{4}\)
\(=\dfrac{20}{36}-\dfrac{9}{36}\)
\(=\dfrac{11}{36}\)
d) \(8-\dfrac{4}{6}\)
\(=\dfrac{48}{6}-\dfrac{4}{6}\)
\(=\dfrac{44}{6}=\dfrac{22}{3}\).
\(M=2^0+2^2+2^4+2^6+2^8+...+2^{2018}\)
\(M=2^0+2^2+\left(2^4+2^6+2^8\right)+...+\left(2^{2014}+2^{2016}+2^{2018}\right)\)
\(M=1+4+2^4.\left(1+2^2+2^4\right)+...+2^{2014}.\left(1+2^2+2^4\right)\)
\(M=5+2^4.21+2^{10}.21+...+2^{2014}.21\)
\(M=5+21.\left(2^4+2^{10}+...+2^{2014}\right)\)
vì \(21.\left(2^4+2^{10}+...+2^{2014}\right)⋮7\)
nên \(M=5+21.\left(2^4+2^{10}+...+2^{2014}\right)\)chia 7 dư 5
S1 = \(\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+...+\frac{127}{128}\)
2S1 = 1 + \(\frac{3}{2}+\frac{7}{4}+\frac{15}{8}+\frac{31}{16}+\frac{63}{32}+\frac{127}{64}\)
2S1 - S1 = S1 = 1 + (1 + 1 + 1 + 1 + 1 + 1) - \(\frac{127}{128}\)= 6 + \(\frac{1}{128}\)
=> S = S1 - 6 = 6 + \(\frac{1}{128}\)- 6 = \(\frac{1}{128}\)
\(S=\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\frac{31}{32}+\frac{63}{64}+\frac{127}{128}-6\)
\(S=\frac{1}{2}+\left(\frac{3}{4}+\frac{7}{8}\right)+\left(\frac{15}{16}+\frac{31}{32}\right)+\left(\frac{63}{64}+\frac{127}{128}\right)-6\)
\(S=\frac{1}{2}+\frac{13}{8}+\frac{61}{32}+\frac{253}{128}-6\)
\(S=\frac{64}{128}+\frac{208}{128}+\frac{244}{128}+\frac{253}{128}-6\)
\(S=\frac{769}{128}-6\)
\(S=\frac{769}{128}-\frac{768}{128}\)
\(S=\frac{1}{128}\)
hok tốt!!
\(\dfrac{4^5\cdot10\cdot5^6+25^5\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{\left(2^2\right)^5\cdot2\cdot5\cdot5^6+\left(5^2\right)^5\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{2^{10}\cdot2\cdot5\cdot5^6+5^{10}\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{2^{11}\cdot5^7+5^{10}\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{2^8\cdot5^7\left(2^3+5^3\right)}{2^5\cdot5^4\left(2^3+5^3\right)}\\ =\dfrac{2^8\cdot5^7}{2^5\cdot5^4}\\ =2^3\cdot5^3\\ =8\cdot125\\ =1000\)
\(B=2\left(-1+2-3+4+...-49+50-51\right)\)
\(=2.\left[\left(2-1\right)+\left(4-3\right)+...\left(50-49\right)-51\right]\)
\(=2.\left(1+1+...+1-51\right)\)
\(=2.\left(25-51\right)=-52\)
\(B=\left(-2\right)+4+\left(-6\right)+8+...+\left(-98\right)+100+\left(-102\right)\)
\(\Rightarrow B=\left[\left(-2\right)+4\right]+\left[\left(-6\right)+8\right]+...+\left[\left(-98\right)+100\right]+\left(-102\right)\) ( 25 cặp số )
\(\Rightarrow B=2+2+...+2-102\) ( 25 số 2 )
\(\Rightarrow B=2.25-102\)
\(\Rightarrow B=50-102\)
\(\Rightarrow B=-52\)
Vậy \(B=-52\)
\(2+4+6+....+2018=\frac{\left(2018+2\right)\left[\left(2018-2\right):2+1\right]}{2}=1019090\)
số số hạng của dãy trên là: (2018-2):1+1=2017
tổng của dãy trên là : (2018+2).2017:2=2037170