tìm số dư khi chia A = 13 + 23 + 33 + ...+ 993 cho B = 1 + 2 + 3 + ... + 99
Mọi người giúp em giải xong trong chiều nay nhé, em cảm ơn ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$C=1+3^2+3^3+(3^4+3^5+3^6)+(3^7+3^8+3^9)+....+(3^{97}+3^{98}+3^{99})$
$=37+3^4(1+3+3^2)+3^7(1+3+3^2)+...+3^{97}(1+3+3^2)$
$=11+13.2+(1+3+3^2)(3^4+3^7+...+3^{97})$
$=11+13.2+13(3^4+3^7+...+3^{97})$
$=11+13(2+3^4+3^7+....+3^{97})$
$\Rightarrow C$ chia $13$ dư $11$.
i don't now
mong thông cảm !
...........................
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
ta có :
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)
nên \(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}\)
\(\Rightarrow A< \frac{99}{100}< 1\)
\(\Rightarrow A< 1\left(đpcm\right)\)
nhiều qá lm sao nổi
Trả lời:
a, ( - x + 5 )2 - 16 = ( - 22 ) . 5
=> ( - x + 5 )2 - 16 = - 20
=> ( - x + 5 )2 = - 20 + 16
=> ( - x + 5 )2 = - 4 ( vô lí )
Vậy không tìm được x thỏa mãn đề bài.
b, 50 - ( 20 - x ) = - x - ( 45 - 85 )
=> 50 - 20 + x = - x - ( - 40 )
=> 30 + x = - x + 40
=> x + x = 40 - 30
=> 2x = 10
=> x = 10 : 2
=> x = 5
Vậy x = 5
Ta thấy rằng:
1^3 + 2^3 = 1 + 8 = 9 = 3^2 = (1 + 2)^2
1^3 + 2^3 + 3^3 = 1 + 8 + 27 = 36 = 6^2 = (1 + 2 + 3)^2
1^3 + 2^3 + 3^3 + 4^3 = 1 + 8 + 27 + 64 = 100 = 10^2 = (1 + 2 + 3 + 4)^2
Vì thế ta có phát biểu:
Tổng các lập phương từ 1 đến n luôn là số chính phương và:
\(1^3+2^3+3^3+...+n^3=\left(\frac{n.\left(n+1\right)}{2}\right)^2\)
Thì áp dụng vào, ta có:
\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+98+99\right)^2⋮B\)
Vì thế, A sẽ chia hết cho B nên số dư là 0