\(a.\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
chứng minh a<2
\(b.2^1+2^2+2^3+...+2^{30}\)
cm: b chia hết cho 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{49.50}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(1-\frac{1}{50}\)
Suy ra:
A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1^2}+\left(1-\frac{1}{50}\right)\)
A<1+1-\(\frac{1}{50}\)
A<2-\(\frac{1}{50}\)<2
Vậy A<2(đpcm)
\(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(.......\)
\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Mà \(\frac{49}{50}< 2\)
\(\Rightarrow A< 2\)
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(\frac{1}{1^2}=1\)
Ta có :
\(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4}\)
\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)
\(=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+1-\frac{1}{50}\)
\(=2-\frac{1}{50}\)
\(\Rightarrow A< 2-\frac{1}{50}< 2\left(dpcm\right)\)
CHO \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}.\)CHỨNG MINH A<2
\(\frac{1}{2^2}< \frac{1}{1.2}\)
...................\(\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
\(\Rightarrow A< 1-\frac{1}{50}< \frac{49}{50}< 1< 2\)
1/2^2<1/1*2;1/3^2<1/2*3;1/4^2<1/3*4;1/50^2<1/49*50
ta có:
=> 1/1^2+1/2*3+1/3*4+...+1/49*50
<=> 1/1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50
<=> 1-1/50 < 2
=> A < 2
Đặt \(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)
\(\frac{1}{1^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{2^2}< \frac{1}{2\cdot3}\)
...
\(\frac{1}{50^2}< \frac{1}{49\cdot50}\)
\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(B=1-\frac{1}{50}< 2\)
\(\Rightarrow A< B< 2\)(đpcm)
\(A=\frac{1}{1^1}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
Ta thấy \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{50^2}< \frac{1}{49.50}\)
Khi đó \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{49.50}=B\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{49}-\frac{1}{50}< 1\)
Vì \(A< 1+B\)mà \(B< 1\)nên \(B+1< 2\)do đó \(A< 2\)
Vậy \(A< 2\)
1/12+1/22+....+1/502<1/1+1/1x2+1/2x3+....+1/49x50=1-1/50=49/50<2
=>A<2(đpcm)
Ta có
\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3}......\frac{1}{50^2}<\frac{1}{49.50}\)
\(=>A<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
=> A<2-1/50
=> A < 2
=> đpcm
Ta có: A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
A < \(\frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
=> A < 1 +( \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\))
A< 1 +1 -\(\frac{1}{50}\)
A< 2 - \(\frac{1}{50}\)
Vậy A< 2
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
=>A< \(\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
=\(1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\)
=\(1+\left(1-\frac{1}{50}\right)\)
=\(1+\frac{49}{50}\) =\(1\frac{49}{50}<2\)
Vậy A<2
A=1/1^2+1/2^2+1/3^2+.....+1/50^2
A<B=1+1/1.2+1/2.3+1/3.4+........+1/49.50
=1+(1-1/2+1/2-1/3+1/3-1/4+......+1/49-1/50)
=1+(1-1/50)
=1+ 49/50
=99/100<50/100 SUY RA 99/100<50/100 DO A<B<2
SUY RA A<2
ỦNG HỘ CHO MÌNH NHÉ
Bạn xem lời giải ở đường link sau nhé:
Câu hỏi của nguyenducminh - Toán lớp 6 - Học toán với OnlineMath
A=\(\frac{1}{1^2}\)\(+\frac{1}{2^2}\)\(+\frac{1}{3^2}\)\(+...+\frac{1}{50^2}\)
A<1\(+\frac{1}{1.2}\)\(+\frac{1}{2.3}\)\(+...\frac{1}{49.50}\)
=1+1-\(-\frac{1}{2}\)\(+\frac{1}{2}\)\(-\frac{1}{3}\)\(+...+\frac{1}{49}\)\(-\frac{1}{50}\)
=\(1+1-\frac{1}{50}\)
=\(2-\frac{1}{50}\)\(< 2\)
\(\Rightarrow A< 2\)
\(A<1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1+\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(A<1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}<2\)
b, 21 + 22 + 23 + ... + 230
= ( 21 + 22 + 23 + 24 + 25 + 26 ) + ( 27 + 28 + 29 + 210 + 211 + 212 ) + ... + ( 225 + 226 + 227 + 228 + 229 + 230 )
= 21 . ( 20 + 21 + 22 + 23 + 24 + 25 ) + 27 . ( 20 + 21 + 22 + 23 + 24 + 25 ) + ... + 225 . ( 20 + 21 + 22 + 23 + 24 + 25 )
= 2 . 63 + 27 . 63 + ... + 225 . 63
= 63 . ( 2 + 27 + ... + 225 )
= 21 . 3 . ( 2 + 27 + ... + 225 ) \(⋮\)21
tớ chỉ giải phần a thôi nhé
ta có:1/22 < 1/1+2
1/32 < 1/2+3
.......
1/502<1/49+50
gọi biểu thức trên là A
Ta có : A<1/1+2 +1/2+3 +.....+1/49+50
A<1-1/2+1/2-1/3 +......+1/49-1/50
A<1-1/50 mà 1-1/50<2 nên A<2
nghĩa là biểu thức trên nhỏ hơn hai