K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

Quy đồng hết lên đi thì được:

\(x^4-3x^3+2x^2-9x+9=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2+x+3\right)=0\)

16 tháng 3 2023

\(\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)

\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x\left(x+1\right)}\)

ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)

Ta có : `(x-1)/x -1/(x+1) =(2x-1)/(x(x+1))`

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}-\dfrac{x}{x\left(x+1\right)}=\dfrac{2x-1}{x\left(x+1\right)}\)

`=> x^2 +x -x-1 -x-2x+1=0`

`<=> x^2 -3x =0`

`<=> x(x-3)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=3\end{matrix}\right.\)

__

`(x+2)(5-3x)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\5-3x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\3x=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{5}{3}\end{matrix}\right.\)

__

\(\dfrac{5\left(1-2x\right)}{3}+\dfrac{x}{2}=\dfrac{3\left(x-5\right)}{4}-2\)

\(\Leftrightarrow\dfrac{20\left(1-2x\right)}{12}+\dfrac{6x}{12}=\dfrac{9\left(x-5\right)}{12}-\dfrac{24}{12}\)

`<=> 2x- 40x + 6x = 9x - 45 -24`

`<=>  2x- 40x + 6x-9x + 45 +24=0`

`<=>-41x+69=0`

`<=>-41x=-69`

`<=> x=69/41`

16 tháng 3 2023

Cậu tách 2 câu 1 lượt mn trl nhanh hơn đó ạ

a:=>x^2-1-x=2x-1

=>x^2-x-1=2x-1

=>x^2-3x=0

=>x=0(loại) hoặc x=3(nhận)

b:=>x+2=0 hoặc 5-3x=0

=>x=-2 hoặc x=5/3

c:=>20(1-2x)+6x=9(x-5)-24

=>20-40x+6x=9x-45-24

=>-34x+20=9x-69

=>-43x=-89

=>x=89/43

d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3

=>2x^2+4x-19=-2x+7

=>2x^2+6x-26=0

=>x^2+3x-13=0

=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)

e: =>(2x-3)(2x-3-x-1)=0

=>(2x-3)(x-4)=0

=>x=4 hoặc x=3/2

29 tháng 11 2019

Làm ngắn gọn thôi nhé :v

\(A=\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)

\(A=\frac{x^5-3x^4-3x^3+11x^2-6x}{x^5-8x^2+22x^2-24x+9}\)

\(A=\frac{x^4-3x^3-3x^2+11x-6}{x^4-8x^3+22x^2-24x+9}\)

\(A=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)}{\left(x-1\right)\left(x-1\right)\left(x-3\right)\left(x-3\right)}\)

\(A=\frac{x+2}{x-3}\)

\(B=\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)

\(B=\frac{-x^4-4x^3+16x+16}{-x^4+8x^2-16}\)

\(B=\frac{\left(-x-2\right)\left(x+2\right)\left(x+2\right)\left(x-2\right)}{\left(-x-2\right)\left(x-2\right)\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{x+2}{x-2}\)

\(C=\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{1+x}{3-x}-\left(\frac{1-2x}{3+x}\right)-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{10x}{-x^2+9}\)

\(D=\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)

\(D=\frac{5}{2x^2+6x}-\left(\frac{4-3x^2}{x^2-9}\right)-3\)

\(D=\frac{51x^2+138x-45}{2x^4+6x^2-18x^2-54x}\)

\(D=\frac{3\left(17x-5\right)\left(x+3\right)}{2x\left(x+3\right)\left(x+3\right)\left(x-2\right)}\)

\(D=\frac{51x-15}{2x^3-18x}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\left(\frac{3x-2}{x^2+2x+1}\right)\)

\(E=\frac{10x^4-10}{x^6-3x^4+3x^2-1}\)

\(E=\frac{10\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)\left(x-1\right)}\)

\(E=\frac{10x^2+10}{x^4-2x+1}\)

15 tháng 12 2018

\(a.ĐKXĐ:\hept{\begin{cases}1-3x\ne0\\3x+1\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\...\\x\ge0\end{cases}}}\)

15 tháng 12 2018

\(b,M=\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10}{1-6x+9x^2}\)

\(=\left(\frac{3x\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\frac{2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)

\(=\left(\frac{3x+9x^2+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)

\(=\frac{5x+3x^2}{1+3x}.\frac{1-3x}{2\left(3x^2+5\right)}\)

==>Sai đề không mem

16 tháng 8 2019

a, \(3\left(2x-1\right)-3x\left(-x+2\right)=5x-\left(1-3x\right)\cdot x\\ 6x-3+3x^2-6x=5x-x+3x^2\\ 3x^2-3=4x+3x^2\\ 3x^2-3x^2=4x+3\\ 4x+3=0\\ 4x=-3\\ x=\frac{-3}{4}\)

Vậy \(x=\frac{-3}{4}\)

b, \(x-\frac{x-3}{4}=3-\frac{x-3}{12}\\ \frac{4x-x-3}{4}=\frac{36-x-3}{12}\\ \frac{3x-3}{4}=\frac{33-x}{12}\\ \Rightarrow12\left(3x-3\right)=4\left(33-x\right)\\ 36x-36=132-4x\\ 36x+4x=132+36\\ 40x=168\\ x=\frac{168}{40}=\frac{21}{5}\)

Vậy \(x=\frac{21}{5}\)

16 tháng 8 2019

bài làm của bn bị Math Processing Error kìa

23 tháng 4 2020

a, (3x - 2)(4x + 3) = (2 - 3x)(x - 1)

\(\Leftrightarrow\) (3x - 2)(4x + 3) - (2 - 3x)(x - 1) = 0

\(\Leftrightarrow\) (3x - 2)(4x + 3) + (3x - 2)(x - 1) = 0

\(\Leftrightarrow\) (3x - 2)(4x + 3 + x - 1) = 0

\(\Leftrightarrow\) (3x - 2)(5x + 2) = 0

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\5x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{-2}{5}\end{matrix}\right.\)

Vậy S = {\(\frac{2}{3}\); \(\frac{-2}{5}\)}

b, x2 + (x + 3)(5x - 7) = 9

\(\Leftrightarrow\) x2 - 9 + (x + 3)(5x - 7) = 0

\(\Leftrightarrow\) (x - 3)(x + 3) + (x + 3)(5x - 7) = 0

\(\Leftrightarrow\) (x + 3)(x - 3 + 5x - 7) = 0

\(\Leftrightarrow\) (x + 3)(6x - 10) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\6x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{5}{3}\end{matrix}\right.\)

Vậy S = {-3; \(\frac{5}{3}\)}

c, 2x2 + 5x + 3 = 0

\(\Leftrightarrow\) 2x2 + 2x + 3x + 3 = 0

\(\Leftrightarrow\) 2x(x + 1) + 3(x + 1) = 0

\(\Leftrightarrow\) (x + 1)(2x + 3) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy S = {-1; \(\frac{3}{2}\)}

d, \(\frac{3-2x}{2006}+\frac{3-2x}{2007}+\frac{3-2x}{2008}=\frac{3-2x}{2009}+\frac{3-2x}{2010}\)

\(\Leftrightarrow\) \(\frac{3-2x}{2006}+\frac{3-2x}{2007}+\frac{3-2x}{2008}-\frac{3-2x}{2009}-\frac{3-2x}{2010}=0\)

\(\Leftrightarrow\) (3 - 2x)\(\left(\frac{1}{2006}+\frac{1}{2007}+\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)\) = 0

\(\Leftrightarrow\) 3 - 2x = 0

\(\Leftrightarrow\) x = \(\frac{3}{2}\)

Vậy S = {\(\frac{3}{2}\)}

Chúc bn học tốt!!

24 tháng 4 2020

Thanks a lot !!!

31 tháng 1 2019

2 ( x - 3 ) - 3 ( 2 - 3x ) = 4 [ ( 1 - 2x ) + 15 ]

 2x - 6 - 6 + 9x = 4 [ 1 - 2 x + 15 ]

2x - 6 -6 + 9x =   4 - 8x + 60

2x + 9x + 8x  = 4 + 60 + 6 + 6 

 19x                 = 76

=> x                 = 76 : 19 

=> x                 = 4

Vậy x = 4

31 tháng 1 2019

\(2\left(x-3\right)-3\left(2-3x\right)=4\left[\left(1-2x\right)+15\right]\)

\(\Rightarrow2x-6-6+9x=4\left[1-2x+15\right]\)

\(\Rightarrow2x-6-6+9x=4-8x+60\)

\(\Rightarrow2x+9x+8x=4+60+6+6\)

\(\Rightarrow19x=76\)

\(\Rightarrow x=76:19=4\)

Vậy x = 4

16 tháng 7 2017

a)   \(\left(x+3\right)^3-x.\left(3x+1\right)^2+\left(2x+1\right).\left(4x^2-2x+1\right)-3x^2=54\)

\(\Leftrightarrow x^3+9x^2+27x+27-x.\left(9x^2+6x+1\right)+8x^3+1-3x^2=54\)

\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=54\)

\(\Leftrightarrow26x+28=54\Leftrightarrow26x=54-28\Leftrightarrow26x=26\Leftrightarrow x=1\)

Vậy nghiệm của phương trình là x=1

b)   \(\left(x-3\right)^3-\left(x-3\right).\left(x^2+3x+9\right)+6.\left(x+1\right)^2+3x^2=-33\)

\(\Leftrightarrow x^3-9x^2+27x-27-\left(x^3-27\right)+6.\left(x^2+2x+1\right)+3x^2=-33\)

\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+6+3x^2=-33\)

\(\Leftrightarrow27x+12x+6=-33\Leftrightarrow39x=-33-6\Leftrightarrow39x=-39\Leftrightarrow x=-1\)

Vậy nghiệm của phương trình là x = -1

16 tháng 7 2017

Trần Anh: Hí hí =)) ÀI LỚP DIU CHIU CHIU CHÍU :3 CẢM ƠN PẠN NHIỀU NHÁ ;) ;) ;) 

26 tháng 7 2023

\(|\dfrac{4}{3}x-\dfrac{3}{4}|=\left|-\dfrac{1}{3}\right|.\left|x\right|\Leftrightarrow|\dfrac{4}{3}x-\dfrac{3}{4}|=\dfrac{1}{3}.\left|x\right|\left(1\right)\)

Tìm nghiệm \(\dfrac{4}{3}x-\dfrac{3}{4}=0\Leftrightarrow\dfrac{4}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\)

                    \(x=0\)

Lập bảng xét dấu :

     \(x\)                           \(0\)                   \(\dfrac{9}{16}\)

\(\left|\dfrac{4}{3}x-\dfrac{3}{4}\right|\)         \(-\)       \(0\)           \(-\)       \(0\)        \(+\)

      \(\left|x\right|\)              \(-\)       \(0\)           \(+\)       \(0\)        \(+\)

TH1 : \(x< 0\)

\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}.\left(-x\right)\)

\(\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=-\dfrac{1}{3}.x\)

\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\)

\(\Leftrightarrow x=\dfrac{3}{4}\) (loại vì không thỏa \(x< 0\))

TH2 : \(0\le x\le\dfrac{9}{16}\)

\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}x\)

\(\Leftrightarrow\dfrac{4}{3}x+\dfrac{1}{3}x=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{5}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{5}\Leftrightarrow x=\dfrac{9}{20}\) (thỏa điều kiện \(0\le x\le\dfrac{9}{16}\))

TH3 : \(x>\dfrac{9}{16}\)

\(\left(1\right)\Leftrightarrow\dfrac{4}{3}x-\dfrac{3}{4}=\dfrac{1}{3}x\)

\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}\) (thỏa điều kiện \(x>\dfrac{9}{16}\))

Vậy \(x\in\left\{\dfrac{9}{20};\dfrac{3}{4}\right\}\)