x*(5-2x)+x*(x-1)=15
giải giúp mik ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(x+\dfrac{4}{7}=\dfrac{38}{21}\)
\(x=\dfrac{38}{21}-\dfrac{4}{7}\)
\(x=\dfrac{38}{21}-\dfrac{12}{21}=\dfrac{26}{21}\)
b.\(x-\dfrac{1}{3}=\dfrac{7}{45}:\dfrac{2}{15}\)
\(x-\dfrac{1}{3}=\dfrac{7}{6}\)
\(x=\dfrac{7}{6}+\dfrac{1}{3}\)
\(x=\dfrac{7}{6}+\dfrac{2}{6}=\dfrac{9}{6}\)
đề bài sai sao ý 9/15 mà nếu 9/ 16 thì ko tính thận tiện đc
\(\dfrac{10}{15}\)x\(\dfrac{9}{16}+\dfrac{7}{15}\)x\(\dfrac{10}{15}\)
=> \(\dfrac{10}{15}\)x\(\left(\dfrac{9}{16}+\dfrac{7}{15}\right)\)
=> \(\dfrac{10}{15}\)x\(\dfrac{247}{240}\)
=> \(\dfrac{247}{360}\)
\(a,2^x+2^{x+3}=144\\ 2^x.\left(1+2^3\right)=144\\ 2^x.9=144\\ 2^x=144:9\\ 2^x=16=2^4\\ vậy:x=4\)
\(b,\left(x-5\right)^{2022}=\left(x-5\right)^{2021}\\ Vì:\left[{}\begin{matrix}0^{2022}=0^{2021}\\1^{2022}=1^{2021}\end{matrix}\right.\\ Vậy:\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
a: =(x-y)^2+2(x-y)
=(x-y)(x-y+2)
c: =(x-3)(x+3)+(x-3)^2
=(x-3)(x+3+x-3)
=2x(x-3)
d: =(x+3)(x^2-3x+9)-4x(x+3)
=(x+3)(x^2-7x+9)
e: =(x^2-8x+7)(x^2-8x+15)-20
=(x^2-8x)^2+22(x^2-8x)+85
=(x^2-8x+17)(x^2-8x+5)
a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0
=>-5x-4=0
=>x=-4/5
b: =>6x^2-9x+2x-3-6x^2-12x=16
=>-19x=19
=>x=-1
c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81
=>83x=83
=>x=1
\(\sqrt{x^2-2x+4}+\sqrt{x^2+5}=9-2x\left(đk:x\le\dfrac{9}{2}\right)\)
\(\Leftrightarrow x^2-2x+4+x^2+5+2\sqrt{\left(x^2-2x+4\right)\left(x^2+5\right)}=81-36x+4x^2\)
\(\Leftrightarrow2\sqrt{\left(x^2-2x+4\right)\left(x^2+5\right)}=2x^2-34x+72\)
\(\Leftrightarrow4\left(x^2-2x+4\right)\left(x^2+5\right)=4x^4+1156x^2+5184-136x^3+288x^2-4896x\)
\(\Leftrightarrow4x^4-8x^3+36x^2-40x+80=4x^4-136x^3+1444x^2-4896x+5184\)
\(\Leftrightarrow128x^3-1408x^2+4856x-5104=0\)
\(\Leftrightarrow128x^2\left(x-2\right)-1152x\left(x-2\right)+2552\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(128x^2-1152x+2552\right)=0\)
\(\Leftrightarrow x=2\left(tm\right)\)(do \(128x^2-1152x+2552>0\))
\(x\left(5-2x\right)+x\left(x-1\right)=15\)
\(5x-2x^2+x^2-x=15\)
\(-x^2+4x-15=0\)
\(x^2-4x+15=0\)
\(x^2-4x+4=-11\)
\(\left(x-2\right)^2=-11\) ( KTM)
x*(5-2x)+x*(x-1)=15
=> 5x-2x^2+x^2-x=15
=>-x^2+4x -4=11
=>(x-2)^2= -11
=> Phương trình vô nghiệm