cho hai góc AOB và COD cùng đỉnh O, các cạnh của góc này vuông góc với các cạnh của góc kia. tính các góc AOB và COD nếu hiệu của chúng bằng 90 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có
\(\widehat{AOD}=\widehat{AOB}-\widehat{BOD}\)
\(\Rightarrow\widehat{AOD}=130^0-90^0=40^0\) [ 1 ]
Mặt khác
\(\widehat{BOC}=\widehat{AOB}-\widehat{AOC}\)
\(\Rightarrow\widehat{BOC}=130^0-90^0=40^0\) [ 2 ]
Từ [ 1 ] và [ 2 ] suy ra
\(\widehat{AOD}=\widehat{BOC}=40^0\)
b.Ta thấy
\(\widehat{AOB}=\widehat{AOD}+\widehat{COD}+\widehat{BOC}\)
\(\Rightarrow\widehat{COD}=\widehat{AOB}-2\widehat{AOD}\)[ vì góc AOD = góc BOC theo câu a ]
\(\Rightarrow\widehat{COD}=130^0-2.40^0\)
\(\Rightarrow\widehat{COD}=130^0-80^0=50^0\)
Vậy góc COD = 50độ
c.Vì OM là tia phân giác góc COD nên
\(\widehat{COM}=\widehat{DOM}=\frac{\widehat{COD}}{2}=\frac{50^0}{2}=25^0\)
Ta có
\(\widehat{AOM}=\widehat{AOD}+\widehat{DOM}\)
\(\Rightarrow\widehat{AOM}=40^0+25^0=65^0\)
mà \(\widehat{BOM}=\widehat{BOC}+\widehat{COM}\)
\(\Rightarrow\widehat{BOM}=40^0+25^0=65^0\)
Suy ra \(\widehat{AOM}=\widehat{BOM}\)
Vậy OM là tia phân giác góc AOB
Chúc bạn học tốt
a) Ta có AOC = BOD (= 90o)
=> AOC - COD = BOD - COD
=> AOD = BOC
b) Ta có AOC + BOC = AOB
90o + BOC = 130o
BOC = 40o
Ta có COD + BOC = DOB
COD + 40o = 90o
COD = 50o
c) Ta có OM là tia phân giác của COD
=> DOM = MOC
=> DOM + AOD = MOC + COB (AOD = COB)
=> AOM = MOB
Mà OM nằm giữa hai tia OA và OB
=> OM là tia phân giác của AOB
Tương tự cho trường hợp ngược lại
(hình tự vẽ)
a, Ta có: \(\widehat{AOB}+\widehat{BOC}=180^o\)
\(\Rightarrow3\widehat{BOC}+\widehat{BOC}=180^o\)
\(\Rightarrow4\widehat{BOC}=180^o\)
\(\Rightarrow\widehat{BOC}=45^o\)
\(\Rightarrow\widehat{AOC}=3\widehat{BOC}=3.45^o=135^o\)
b, Ta có: \(\widehat{AOD}+\widehat{DOB}=135^o\)
\(\Rightarrow90^o+\widehat{DOB}=135^o\)
\(\Rightarrow\widehat{DOB}=45^o\)
Mà \(\widehat{BOC}=45^o\)
\(\Rightarrow\widehat{DOB}=\widehat{BOC}=45^o\)
Và OB nằm giữa OD, OC
=> OB là tia p/g của \(\widehat{COD}\)
Ta có:
Góc BOD + góc DOC = 1200
=> góc DOC = 1200 - góc BOD = 120o - 90o = 30o
Góc AOC + góc COB = 120o
=> góc COB = 120o - góc AOC= 120o - 90o = 300
mà Góc BOC + góc COD + góc DOA = 120o
=> góc COD = 120o - ( góc BOC + góc DOA) = 1200 - 600 = 600
Ta có:
Góc BOC = Góc AOD
=> \(\frac{1}{2}BOC=\frac{1}{2}AOD=\frac{30}{2}=15^o\)
hay góc nOC = góc mOD = 15o
mà góc nOm= góc nOC +góc mOD + góc COD = 15o +150 +600 = 90o
hay nO vuông góc với mO.