K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

\(\Rightarrow a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2=a^2x^2+b^2y^2+c^2z^2+2abxy+2bcyz+2acxz\)

\(\Rightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2=2abxy+2bcyz+2acxz\)

\(\Rightarrow\left(a^2y^2-2abxy+b^2x^2\right)+\left(a^2z^2-2acxz+c^2x^2\right)+\left(b^2z^2-2bcyz+c^2y^2\right)=0\)

\(\Rightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)

vì \(\frac{x}{a}=\frac{y}{b}\Rightarrow ay=bc\Rightarrow\left(ay-bx\right)^2=0\)

   \(\frac{y}{b}=\frac{z}{c}\Rightarrow cy=bz\Rightarrow\left(bz-cy\right)^2=0\)

   \(\frac{x}{a}=\frac{z}{c}\Rightarrow cx=az\Rightarrow\left(az-cx\right)^2=0\)

\(\Rightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)luôn đúng

\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

6 tháng 1 2022

Nếu cái j?

 

6 tháng 1 2022

nếu = nhau

 

15 tháng 5 2021

đặt x/a=y/b=z/c=k

=>x=a.k,

y=b.k

z=c.k

=>(a^2k^2+b^2k^2+c^2k^2)(a^2+b^2+c^2)=k^2.(a^2+b^2+c^2)^2(1)

(ax+by+cz)^2=(a.a.k+b.b.k+c.c.k)^2=(a^2.k+b^2.k+c^2.k)^2

=k^2(a^2+b^2+c^2)(2)

từ (1)(2)=> nếu x/a=y/b=z/c thì (x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2

 

=>

 

 

 

25 tháng 8 2023

Có: \(a+b+c=1\Leftrightarrow\left(a+b+c\right)^2=1\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\)

\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\) (do \(\left(a+b+c\right)^2=a^2+b^2+c^2=1\))

23 tháng 4 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

16 tháng 2 2018

Chọn đáp án D

10 tháng 11 2021

\(ax+by+cz\\ =x\left(x^2-yz\right)+y\left(y^2-xz\right)+z\left(z^2-xy\right)\\ =x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

Lại có \(a+b+c=x^2+y^2+z^2-xy-yz-xz\)

Vậy ta được đpcm