Giải và biện luận : \(a^2x-b^2x+ab+b^2=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 2x + m - 4 = 0 hoặc 2mx - x + m = 0
<=> 2x + m - 4=0(1) hoặc (2m - 1)x +m =0(2)
(1)
Xét m = 0 thì pt có nghiệm duy nhất là x = 2
Xét m ≠ 0 thì pt có nghiệm là x = (4-m)/2
(2)
Xét m = 1/2 thì pt vô nghiệm.
Xét m ≠ 1/2 thì pt có nghiệm duy nhất là x= -1/(4m - 2)
Câu b thì bn viết ko rõ đề lắm nên k giải.
\(a\text{) }pt\Leftrightarrow\left(m-2\right)x=m+1\)
\(+m-2=0\Leftrightarrow m=2\) thì pt trở thành 0 = 3 (vô lí) => pt vô nghiệm.
\(+m-2\ne0\Leftrightarrow m\ne2\) thì pt tương đương \(x=\frac{m+1}{m-2}\)
Vậy:
+m = 0 thì pt vô nghiệm.
+m khác 0 thì pt có nghiệm duy nhất \(x=\frac{m+1}{m-2}\)
\(b\text{) }pt\Leftrightarrow\left(m^2-2\right)x=-4\)
\(+m^2-2=0\Leftrightarrow m=\sqrt{2}\text{ hoặc }m=-\sqrt{2}\) thì pt thành 0 = -4 (vô lí) => pt vọ nghiệm.
\(+m^2-2\ne0\Leftrightarrow m\ne\sqrt{2};-\sqrt{2}\)thì pt tương đương \(x=\frac{-4}{m^2-2}\)
Vậy:
+m=√2 ; -√2 thì pt vô nghiệm.
+m khác √2; -√2, pt có nghiệm duy nhất \(x=-\frac{4}{m^2-2}\)
a) \(m\left(x-1\right)=2x+1\)
\(\Leftrightarrow xm-m=2x+1\)
\(\Leftrightarrow xm-2x=m+1\)
\(\Leftrightarrow x\left(m-2\right)=m+1\) (*)
+) Nếu \(m-2\ne0\Leftrightarrow m\ne2\)
Phương trình có 1 nghiệm duy nhất \(x=\frac{m+1}{m-2}\)
+) Nếu m = 2
(*) \(\Leftrightarrow0x=3\) ( vô lí )
Suy ra phương trình vô nghiệm
Vậy khi \(m\ne2\) thì phương trình có 1 nghiệm duy nhất \(x=\frac{m+1}{m-2}\)
khi m = 2 thì phương trình vô nghiệm
\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)
\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)
\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\)
Pt đã cho luôn có 3 nghiệm (như trên) với mọi a
\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)
\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất
\(a^2x-b^2x+ab+b^2=0\)
\(\Leftrightarrow\)\(\left(a^2x-b^2x\right)+ab+b^2=0\)
\(\Leftrightarrow\)\(x\left(a^2-b^2\right)+b\left(a+b\right)=0\)
\(\Leftrightarrow\)\(x\left(a-b\right)\left(a+b\right)+b\left(a+b\right)=0\)
Với : \(a\ne\pm b\)\(\Rightarrow\)phương trình có 1 nghiệm duy nhất : \(x=\frac{-b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}=\frac{-b}{a-b}\)
Với : \(a=b\Rightarrow0x=2b^2\rightarrow\)phương trình vô nghiệm
Với: \(a=-b\Rightarrow0x=0\rightarrow\) phương trình vô số nghiệm
Với : \(a=b=0\Rightarrow0x=0\rightarrow\)phương trình vô số nghiệm