K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

@ Vũ Hải Anh

sr ko làm dc

19 tháng 6 2021

\(\left(2x+1\right)^2+\left(y-5\right)^4=0\)

Vì \(\left(2x+1\right)^2\ge0\forall x;\left(y-5\right)^4\ge0\forall y\)

Đẳng thức xảy ra khi \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)

và \(\left(y-5\right)^4=0\Leftrightarrow y=5\)

Vậy x = -1/2 ; y = 5 

NV
14 tháng 9 2021

Gọi A là giao điểm \(k_3\) và \(k_4\Rightarrow\) tọa độ A là nghiệm:

\(\left\{{}\begin{matrix}y=2x-1\\x-3y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=1\\x-3y=-2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(1;1\right)\)

3 đường thẳng đồng quy \(\Leftrightarrow d\) đi qua A

\(\Rightarrow\left(m^2-3m\right).1+2m-5=1\)

\(\Leftrightarrow m^2-m-6=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-2\end{matrix}\right.\)

20 tháng 12 2021

\(\Leftrightarrow2x^2-11x+5-2x^2+10x=25\Leftrightarrow-x=20\Leftrightarrow x=-20\)

|x+1|>=0 với mọi x

=>2|x+1|>=0 với mọi x

mà (x+y)^2>=0 với mọi x,y

nên 2|x+1|+(x+y)^2>=0 với mọi x,y

Dấu = xảy ra khi x+1=0 và x+y=0

=>x=-1 và y=1

12 tháng 9 2023

cảm ơn a

20 tháng 5 2023

`(4x+2)^2+(1-5x)^2-4(2x+1)(1-5x)=0`

`=> (4x+2)^2-4(2x+1)(1-5x)+(1-5x)^2=0`

`=> (4x+2-1+5x)^2=0`

`=> (9x+1)^2=0`

`=> 9x+1=0`

`=> 9x=-1`

`=> x= -1/9`

Vậy \(S=\left\{-\dfrac{1}{9}\right\}\)

11 tháng 12 2021

⇔5-x=0;6+6x=0;2x-4=0

TH1: 5-x=0           TH2:6+6x=0              TH3:2x-4=0

   ⇔x=5                ⇔x=-1                        ⇔x=2

       Vậy x∈{5;-1;2}

Có \(\left(x+1\right)^{24}\ge0\forall x\)

\(\left(y-1\right)^{28}\ge0\forall y\)

Nên \(\left(x+1\right)^{24}+\left(y-1\right)^{28}\ge0\forall x,y\)

Dấu "=" xảy ra khi \(x=-1,y=1\)

29 tháng 1 2021

Ta có:

(x + 1)24 \(\ge\) 0 với mọi x \(\in\) R

(y - 1)28 \(\ge\) 0 với mọi y \(\in\) R

\(\Rightarrow\) (x + 1)24 + (y - 1)28 \(\ge\) 0

\(\Rightarrow\) (x + 1)24 + (y - 1)28 = 0 \(\Leftrightarrow\) (x + 1)24 = 0 và (y - 1)28 = 0

*) (x + 1)24 = 0

x + 1 = 0

x = -1

*) (y - 1)28 = 0

y - 1 = 0

y = 1

Vậy x = -1; y = 1

Có sai không bạn

29 tháng 6 2023

\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)

\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)

\(=6x^2y\)

\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)

\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)

\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)

1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy

2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3

=6x^2y

3: =(x+y-x+y)^2=(2y)^2=4y^2

4: =(2x+3-2x-5)^2=(-2)^2=4

5: =18^8-18^8+1=1