Cho tam giác ABC cân tại A
Trên AB lấy điểm I, trên AC lấy điểm J sao cho AI = CJ
Chứng minh IJ >= \(\frac{1}{2}\) <=> IJ >= HK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn tự vẽ hình nha
a) vì tam giác ABC cân tại A
=> Góc ABC=(180-BAC)/2 (1)
vì AE=AD=> tam giác ADE cân tại A
=> góc ADE=(180-EAD)/2 (2)
mà góc BAC= góc EAD (3)
từ (1),(2) và (3) => góc ABC= góc EDA
mà 2 góc ở vị trí so le trong
=> DE song song với BC
B) xét tam giác BAE và tam giác CAD có
AE=AD ( gt)
góc BAE =góc CAD
AB = AC
=> tam giác BAE = tam giác CAD
=> BE = CD ( 2 cạnh tương ứng)
c)bn tự làm nha... nếu ko bt cứ hỏi ... mk đánh mỏi tay qué
xét tam giác abc, ta có
AB=AC(tam giác ABC cân)
Tam giác ADE là tam giác cân vì
AB=AC(cmt)
hông bít đúng hông nhak pạn
( sửa F thành O nha bạn )
a. xét tam giác ABM và tam giác ACN có
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
BM = CN ( gt )
Vậy tam giác ABM = tam giác ACN ( c.g.c )
b,c,d. xét tam giác vuông BHM và tam giác vuông CKN có:
góc B = góc C ( ABC cân )
BM = CN ( gt )
Vậy tam giác vuông BHM = tam giác vuông CKN ( cạnh huyền . góc nhọn )
=> MH = NK ( 2 cạnh tương ứng )
=> BH = CK ( 2 cạnh tương ứng )
Kẻ AE vuông với BC
=> AE vuông BC (1)
ta có: AH = AK ( ABC cân, BH = CK ( cmt ) )
=> tam giác AHK cân ( câu c )
Mà A là đường cao của tam giác ABC cũng là đường cao tam giác AHK => AO là phân giác góc BAC ( câu d )
=> AO vuông HK (2)
Từ (1) và (2) => HK // BC ( 2 cạnh cùng vuông với cạnh thứ 3 ) ( câu b )
e. Áp dụng định lí pitago vào tam giác vuông BMH, có:
\(BM^2=MH^2+BH^2\)
\(BM^2=3^2+4^2=\sqrt{9+16}=\sqrt{25}=5cm\)
BM = 5cm
Mà BM = MN = NC ( gt )
=> BC = BM + MN + NC = 5 +5 + 5 =15 cm
=> BC =15 cm
a) tam giác ABC có I là trung điểm AB; M là trung điểm BC nên IM là đường trung bình của tam giác ABC
=> IM// AC; IM=1/2 AC hay IM=AK
Tứ giác AIKM có IM//AK; IM=AK nên tứ giác AIKM là hình bình hành.
lại có Góc A bằng 90 độ, vậy AIKM là hình chữ nhật.
b) tam giác MEF có I là trung điểm của ME, K là trung điểm của MF nên IK là đường trung bình của tam giác MEF
=> IK//EF
IK=1/2EF hayEF=2IK.
c) Tam giác ABC có I là trung điểm của AB
K là trung điểm của AC
=> Ik là đường trung bình của tam giác ABC
=> IK//BC=> IK//HM, hay IKMH là hình thang.
Vì AIMK là hình chữ nhật(cmt)
nên AI//KM => góc AIK=MKI(so le trong)
ta có IK//BC(cmt) => Góc AIK=IBC(đồng vị)
từ hai điều này suy ra Góc IBH=MKI.(1)
Tam giác AHB vuông tại H, có HI là trung tuyến
=> IH=IB => Góc IBH=IHB. mà Góc IHB=HIK
=> Góc IBH = HIK(2)
Từ (1) và (2) suy ra Góc HIK=MKI
HÌnh thang IKMH có 2 góc kề đáy HIK=MKI bằng nhau, nên IKMH là hình thang cân.
d) Ta có Góc HIK=MKI(cmt)
mà góc MKI=AIK(so le trong)
nên góc AIK=HIK
Xét tam giác AIK và HIK có
AI=IH(cmt)
AIK=HIK(cmt)
IK cạnh chung
=> hai tam giác bằng nhau theo trương hợp(c.g.c)
=>HK=AK
=> IK=2HK=2AK
mà IK=1/2BC(cmt); AK=1/2AC, nên ta có:
1/2BC=2.1/2AC
=> AC=1/2BC.
Tam giác ABC vuông tại A, có AC=1/2BC nên tam giác ABC là nửa tam giác đều
=> Góc ACB=60độ=> Góc ABC=30 độ
câu này mình không chắc lắm, theo mình nghĩ thì khi cho IK=2HK thì đây là điều kiện mới, không theo cái cũ nữa
chứ nếu theo cũ thì chắc góc ABC k thể bằng 30 đc.