cho x,y là các số không âm.Chứng minh rằng \(\sqrt{x}+\sqrt{y}\) > \(\frac{12\sqrt{xy}}{9+\sqrt{xy}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x>y>z>0\), nên ta có:
\(\left\{{}\begin{matrix}x+y\ge2\sqrt{xy}\\y+z\ge2\sqrt{yz}\\x+z\ge2\sqrt{xz}\end{matrix}\right.\) (bất đẳng thức Cô-si)
Cộng ba bất đẳng thức theo từng vế, ta được:
\(x+y+y+z+x+z\ge2\sqrt{xy}+2\sqrt{yz}+2\sqrt{xz}\)
\(\Leftrightarrow2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)
\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\) (điều phải chứng minh).
Lời giải:
Áp dụng BĐT Cô-si cho các số không âm, ta có:
$x+y\geq 2\sqrt{xy}$
$y+z\geq 2\sqrt{yz}$
$z+x\geq 2\sqrt{zx}$
$\Rightarrow x+y+y+z+z+x\geq 2(\sqrt{xy}+\sqrt{yz}+\sqrt{zx})$
$\Rightarrow x+y+z\geq \sqrt{xy}+\sqrt{yz}+\sqrt{zx}$
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z$
Áp dụng bđt AM-GM ta có
\(x^2-xy+y^2\ge x^2+y^2-\frac{x^2+y^2}{2}=\frac{x^2+y^2}{2}\)
\(\Rightarrow\frac{x+y}{x^2-xy+y^2}\le\frac{2\left(x+y\right)}{x^2+y^2}\le\frac{2\sqrt{2\left(x^2+y^2\right)}}{x^2+y^2}=\frac{2\sqrt{2}}{\sqrt{x^2+y^2}}\)
Dấu "=" xảy ra khi x=y=1
Vì x;y trái dấu => 2 trường hợp
TH1 y < 0 ; x > 0
TH2 x < 0 ; y > 0
Xét TH1 ta có : \(\frac{xy-x^2}{\sqrt{\frac{-x}{y}}}=\frac{-x\left(x-y\right)}{\sqrt{-\frac{x}{y}}}=\frac{-x\left(x-y\right)}{\sqrt{-\frac{1}{y}}.\sqrt{x}}=\frac{-\left(x-y\right)\sqrt{x}}{\sqrt{-\frac{1}{y}}}=-\left(x-y\right)\left(\sqrt{x.\left(-y\right)}\right)\) ;
\(\frac{xy-y^2}{\sqrt{-\frac{y}{x}}}=\frac{y\left(x-y\right)}{\sqrt{-y}.\sqrt{\frac{1}{x}}}=\frac{-\left(-y\right)\left(x-y\right)}{\sqrt{-y}.\sqrt{\frac{1}{x}}}=-\left(x-y\right)\left(\sqrt{x\left(-y\right)}\right)\)
=> ĐPCM
Xét TH2 ta được \(\frac{xy-x^2}{\sqrt{-\frac{x}{y}}}=\frac{-x\left(x-y\right)}{\sqrt{-x}.\sqrt{\frac{1}{y}}}=\left(x-y\right)\left(\sqrt{-xy}\right)\)
\(\frac{xy-y^2}{\sqrt{\frac{-y}{x}}}=\frac{y\left(x-y\right)}{\sqrt{\frac{1}{-x}}.\sqrt{y}}=\sqrt{-xy}\left(x-y\right)\)
=> ĐPCM
Đặt \(A=\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)
Ta có:
\(x^2+xy+yz+zx=x+xyz=x\left(x+yz\right)\)
\(\Rightarrow\frac{x\left(x+yz\right)}{x}=\frac{x^2+xy+yz+zx}{x}\)
\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+zx}{x}=\frac{\left(x^2+xy\right)+\left(yz+zx\right)}{x}=\frac{\left(x+z\right)\left(x+y\right)}{x}\)
\(\Rightarrow\sqrt{x+yz}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\)
Vì x, y, z >0 nên áp dụng bất đẳng thức Bunhiacopxki cho 2 số dương, ta được:
\(\left(x+y\right)\left(x+z\right)\ge\left(\sqrt{x^2}.+\sqrt{yz}\right)^2\)
\(\Rightarrow\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)
\(\Rightarrow\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\)
Do đó \(\sqrt{x+yz}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\left(1\right)\)
Chứng minh tương tự, ta được:
\(\sqrt{y+xz}\ge\frac{y+\sqrt{xz}}{\sqrt{y}}\left(2\right)\)
Chứng minh tương tự, ta được:
\(\sqrt{z+xy}\ge\frac{z+\sqrt{xy}}{\sqrt{z}}\left(3\right)\)
Từ (1), (2) và (3), ta được:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)\(\ge\frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{zx}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}\)
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{\frac{yz}{x}}+\sqrt{y}+\sqrt{\frac{xz}{y}}+\sqrt{z}+\sqrt{\frac{xy}{z}}\)
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{yz+zx+xy}{\sqrt{xyz}}\)
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}\)(vì \(xy+yz+zx=xyz\))
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\)(điều phải chứng minh).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\xy+yz+zx=xyz\end{cases}}\Leftrightarrow x=y=z=3\)
Vậy với x, y, z là các số thực dương thỏa mãn xy + yz + zx =xyz thì:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\).
\(\)
\(A=\dfrac{x-2\sqrt{xy}+y+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ A=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}-\sqrt{x}+\sqrt{y}\\ A=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\)
Đề sai
\(A=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}+\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)
\(=\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}\)
\(=2\sqrt{x}\)
Đề lạ thế bạn ơi! Vế trái luôn không âm mà vế phải luôn không dương nên đây là điều hiển nhiên.
Mình nghĩ đề phải chứng minh thế này:
\(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
Nếu thế thì cách làm như sau:
Ta có: Do x, y, z không âm nên:
\(\left\{{}\begin{matrix}\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\\\left(\sqrt{y}-\sqrt{z}\right)^2\ge0\\\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y-2\sqrt{xy}\ge0\\y+z-2\sqrt{yz}\ge0\\z+x-2\sqrt{xz}\ge0\end{matrix}\right.\)
\(\Rightarrow2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)
\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi \(\sqrt{x}=\sqrt{y}=\sqrt{z}\Leftrightarrow x=y=z\)
Vì x,y không âm
=> \(\hept{\begin{cases}\sqrt{x}+\sqrt{y}\ge0\\9+\sqrt{xy}>0\end{cases}}\)
Áp dụng bất đẳng thức cô-si cho 2 bất đẳng thức trên, ta có
\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}\ge2.\sqrt{\sqrt{x}.\sqrt{y}}=2.\sqrt{\sqrt{xy}}=2\sqrt[4]{xy}\\9+\sqrt{xy}\ge2.\sqrt{9.\sqrt{xy}}=2.3.\sqrt{\sqrt{xy}}=6.\sqrt[4]{xy}\end{cases}}\)
Ta có:
\(9+\sqrt{xy}\ge6.\sqrt[4]{xy}\)
=> \(\frac{12\sqrt{xy}}{9+\sqrt{xy}}\le\frac{12\sqrt{xy}}{6\sqrt[4]{xy}}=2.\sqrt{\frac{xy}{\sqrt{xy}}}=2.\sqrt{\sqrt{xy}}=2\sqrt[4]{xy}\)
Mà \(\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\)
=> \(\sqrt{x}+\sqrt{y}\ge\frac{12\sqrt{xy}}{9+\sqrt{xy}}\)
Dấu "=" xảy ra khi x = y và \(\sqrt{xy}=9\Leftrightarrow xy=81\)
=> Dấu "=" xảy ra khi x = y = 9