K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2018

\(M=\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{xy}\)

\(=\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}+\frac{3}{4}.\frac{x^2+y^2}{xy}\)

\(\ge2\sqrt{\frac{xy}{x^2+y^2}.\frac{x^2+y^2}{4xy}}+\frac{3}{4}.\frac{2xy}{xy}\)

\(\Rightarrow M\ge1+\frac{3}{2}=\frac{5}{2}\)

Dấu = xảy ra khi \(x=y>0\)

3 tháng 12 2017

Ta có: \(A=\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{4}{x-y}\)

Áp dụng BĐT Cô-si cho 2 số không âm, ta có: 

\(A=\left(x-y\right)+\frac{4}{\left(x-y\right)}\ge2\sqrt{\left(x-y\right)\frac{4}{x-y}}=4\)

Dấu bằng xảy ra khi \(\left(x;y\right)=\left(\sqrt{3}+1;\sqrt{3}-1\right);\left(1-\sqrt{3};-1-\sqrt{3}\right)\)

20 tháng 12 2020

Ta có:

\(x+y\ge2\sqrt{xy}=2\sqrt{16}=8\)

Dấu bằng xảy ra khi: x=y=4

Vậy min của x+y là 8 tại x=y=4

1 tháng 7 2017

AM-GM thôi :))

\(M=1+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{xy}+2=3+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}+\frac{x^2+y^2}{2xy}\)

Áp dụng BĐT AM-GM:

\(\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}\ge2\sqrt{\frac{2xy}{x^2+y^2}.\frac{x^2+y^2}{2xy}}=2\)

\(\frac{x^2+y^2}{2xy}\ge\frac{2xy}{2xy}=1\)

\(\Rightarrow VT\ge3+2+1=6\)

Dấu = xảy ra khi x=y

4 tháng 5 2019

\(P=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\)

\(=\frac{xy}{x}+\frac{xy}{y}+\frac{2}{x+y}\)

\(=y+x+\frac{2}{x+y}\ge2\sqrt{\left(x+y\right)\cdot\frac{2}{x+y}}=2\sqrt{2}\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}xy=1\\\left(x+y\right)^2=2\end{matrix}\right.\)

NV
5 tháng 5 2019

\(x+y\ge2\sqrt{xy}=2\)

\(P=\frac{xy}{x}+\frac{xy}{y}+\frac{2}{x+y}=x+y+\frac{2}{x+y}=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}\)

\(P\ge\frac{2}{2}+2\sqrt{\frac{\left(x+y\right)}{2}.\frac{2}{\left(x+y\right)}}=3\)

\(\Rightarrow P_{min}=3\) khi \(x=y=1\)

21 tháng 2 2019

Dự đoán dấu "=" khi x = 2 ; y= 1

Áp dụng bđt Cô-si cho 3 số và bđt \(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\) ta được

\(P=2x^2+y^2+\frac{28}{x}+\frac{1}{y}\)

    \(=\left(\frac{7x^2}{4}+\frac{14}{x}+\frac{14}{x}\right)+\left(\frac{y^2}{2}+\frac{1}{2y}+\frac{1}{2y}\right)+\left(\frac{x^2}{4}+\frac{y^2}{2}\right)\)

    \(\ge3\sqrt[3]{\frac{7x^2.14.14}{4.x^2}}+3\sqrt[3]{\frac{y^2.1.1}{2.2y.2y}}+\frac{\left(x+y\right)^2}{4+2}\)

      \(=3.\sqrt[3]{\frac{7.14.14}{4}}+\frac{3}{\sqrt[3]{2^3}}+\frac{3^2}{6}=24\)

Dấu "=" khi x = 2 ; y = 1 

21 tháng 2 2019

Bài toán easy!

\(P=\left(2x^2+8\right)+\left(y^2+1\right)+\frac{28}{x}+\frac{1}{y}-9\)

Áp dụng BĐT AM-GM,ta có:

\(P\ge8x+2y+\frac{28}{x}+\frac{1}{y}-9\)

\(=\left(7x+\frac{28}{x}\right)+\left(y+\frac{1}{y}\right)+\left(x+y\right)-9\)

\(\ge2\sqrt{7x.\frac{28}{x}}+2\sqrt{y.\frac{1}{y}}+\left(x+y\right)-9\)

\(\ge28+2+3-9=24\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}2x^2=8\\y^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Vậy \(P_{min}=24\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

NV
3 tháng 3 2021

\(P=\dfrac{x+2y}{2xy}+\dfrac{1}{x+2y}=\dfrac{x+2y}{4}+\dfrac{1}{x+2y}\)

\(P=\dfrac{x+2y}{16}+\dfrac{1}{x+2y}+\dfrac{3\left(x+2y\right)}{16}\)

\(P\ge2\sqrt{\dfrac{x+2y}{16\left(x+2y\right)}}+\dfrac{3}{16}.2\sqrt{2xy}=\dfrac{5}{4}\)

\(P_{min}=\dfrac{5}{4}\) khi \(\left(x;y\right)=\left(2;1\right)\)

5 tháng 5 2020

Đặt S=\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{x^2+2xy+y^2}{xy}=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{x^2+y^2}{xy}+2\)

Áp dụng BĐT Cosi ta có: \(x+y\ge2\sqrt{xy}\Leftrightarrow xy< \frac{\left(x+y\right)^2}{4}\)

Do đó \(S\ge\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{4\left(x^2+y^2\right)}{\left(x+y\right)^2}+2\ge2\sqrt{\frac{\left(x+y\right)^2}{x^2+y^2}\cdot\frac{4\left(x^2+y^2\right)}{\left(x+y\right)^2}}+2=6\)

Dấu "=" xảy ra <=> x=y

Vậy MinS=6 đạt được khi x=y

5 tháng 5 2020

Ta có: 

\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)

\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)

\(\ge\left(x+y\right)^2.\frac{4}{\left(x+y\right)^2}+\frac{4xy}{2xy}=6\)

Dấu "=" xảy ra <=> x = y 

Vậy min \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)= 6 đạt tại x = y.