Tìm giá trị nhỏ nhất của A = 2/(1-x) +1/x với 0<x<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để $A$ min thì $\sqrt{x}-2$ là số âm lớn nhất
Với $x$ chính phương thì $\sqrt{x}-2$ đạt giá trị âm lớn nhất bằng $-1$
$\Leftrightarrow x=1$
Khi đó: $A_{\min}=\frac{1}{-1}=-1$
Để $A$ max thì $\sqrt{x}-2$ là số dương nhỏ nhất.
Với $x$ chính phương thì $\sqrt{x}-2$ đạt giá trị dương nhỏ nhất bằng $1$
$\Leftrightarrow x=9$
Khi đó: $A=\frac{1}{1}=1$
Áp dụng bđt bu-nhi-a-cốp-xki ta có:
\(\left[\left(\sqrt{\frac{2}{1-x}}\right)^2+\left(\sqrt{\frac{1}{x}}\right)^2\right].\left[\left(\sqrt{1-x}\right)^2+\left(\sqrt{x}\right)^2\right]\ge\left(\sqrt{\frac{2}{1-x}}.\sqrt{1-x}+\sqrt{\frac{1}{x}}\cdot\sqrt{x}\right)^2\)
=>\(\left(\frac{2}{1-x}+\frac{1}{x}\right)\left(1-x+x\right)\ge\left(\sqrt{2}+\sqrt{1}\right)^2\)
=>\(A\ge3+2\sqrt{2}\)
Dấu "=" xảy ra <=> \(\frac{\frac{2}{1-x}}{1-x}=\frac{\frac{1}{x}}{x}\Leftrightarrow\frac{2}{\left(1-x\right)^2}=\frac{1}{x^2}\Leftrightarrow2x^2=\left(1-x\right)^2\)
<=>\(x\sqrt{2}=1-x\left(0< x< 1\right)\Leftrightarrow x\left(\sqrt{2}+1\right)=1\Leftrightarrow x=\sqrt{2}-1\)
A=1/x2/(1-x)
=(1/x-1)+[2/(1-x)-2]+3
=(1-x)/x+2x/(1-x)+3
>=2√2+3(áp dụng BĐT Cô si)
Dấu bằng xảy ra khi x=√2-1 BĐT
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{5}{4xy}\)
\(\ge\dfrac{4}{x^2+y^2+2xy}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{5}{4.\dfrac{\left(x+y\right)^2}{4}}\)
\(\ge\dfrac{4}{1^2}+2+\dfrac{5}{1^2}\) (do \(x+y\le1\))
\(=11\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Vậy GTNN của A là 11.
\(A=2+x+y+\frac{1}{x}+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}=2+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)
Áp dụng cô-si cho từng cặp là ok,,,,
Riêng cặp cuối \(x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2}\Leftrightarrow-\left(x+y\right)\ge-\sqrt{2}\)
có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)
có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)
từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)
=>Min A=(1+\(\sqrt{2}\))^2
Xét biểu thức \(B=\frac{2x}{1-x}+\frac{1-x}{x}\)
Theo BĐT AM-GM ta có : \(B\ge2\sqrt{\frac{2x}{1-x}.\frac{1-x}{x}}=2\sqrt{2}\)
Mà \(A-B=\frac{2-2x}{1-x}+\frac{1-1+x}{x}=3\)
\(\Rightarrow A\ge3+B\ge3+2\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{2x}{1-x}=\frac{1-x}{x}\Leftrightarrow x^2+2x-1=0\Rightarrow x=\sqrt{2}-1\)(TM)
Vậy \(A\) đạt GTNN là \(3+2\sqrt{2}\) tại \(x=\sqrt{2}-1\)