giải phương trình : X^2=(x-1)(3x-2)
giải giup em
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-x_{ }^2\right)\left(2x^2-3x-2\right)=0\)
\(\Leftrightarrow x\left(2-x\right)\left[\left(x-2\right)\left(2x+1\right)\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
2x + 1 = 0 x = - 1/ 2
a: 7x+35=0
=>7x=-35
=>x=-5
b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
=>8-x-8(x-7)=1
=>8-x-8x+56=1
=>-9x+64=1
=>-9x=-63
hay x=7(loại)
a, \(7x=-35\Leftrightarrow x=-5\)
b, đk : x khác 7
\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)
vậy pt vô nghiệm
2, thiếu đề
\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)
Lời giải:
a. $f'(x)\leq 0$
$\Leftrightarrow 3x^2-6x\leq 0$
$\Leftrightarrow x(x-2)\leq 0$
$\Leftrightarrow 0\leq x\leq 2$
b.
$f'(x)=x^2-3x+2=0$
$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$
$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
c.
$g(x)=f(1-2x)+x^2-x+2022$
$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$
$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$
$g'(x)\geq 0$
$\Leftrightarrow -24x^2+2x+5\geq 0$
$\Leftrightarrow (5-12x)(2x-1)\geq 0$
$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
\(\frac{1}{x+1}+\frac{1}{1-x}=\frac{3x-6}{1-x^2}\)
\(\frac{1-x+x+1}{1-x^2}=\frac{3x-6}{1-x^2}\)
\(2=3x-6\)
\(4=3x\)
\(x=\frac{4}{3}\)
\(\frac{1}{x+1}-\frac{1}{x-1}=\frac{3x-6}{1-x^2}\)
\(\Leftrightarrow\frac{1}{x+1}+\frac{1}{1-x}=\frac{3x-6}{\left(1-x\right)\left(x+1\right)}\)
Quy đồng rồi khử mẫu ta được:
\(1-x+x+1=3x-6\)
\(\Leftrightarrow-x+x-3x=-6-1-1\)
\(\Leftrightarrow-3x=-8\)
\(\Leftrightarrow x=\frac{8}{3}\)
Vậy ....
\(x^2=\left(x-1\right)\left(3x-2\right)\)
\(\Leftrightarrow x^2=3x^2-5x+3\)
\(\Leftrightarrow2x^2-5x=-3\)
\(x\left(2x-5\right)=-3\)
->Lập bảng->tìm x
Ta có: \(x^2=\left(x-1\right)\left(3x-2\right)\)
\(=3x^2-5x+2\)
\(\Rightarrow3x^2-5x+2-x^2=0\)
\(\Rightarrow2x^2-5x+2=0\)
\(\Rightarrow2\left(x^2-\frac{5}{2}x+1\right)=0\)
\(\Rightarrow x^2-\frac{5}{2}x+1=0\)
\(\Rightarrow x^2-2.\frac{5}{4}x+\left(\frac{5}{4}\right)^2-\frac{9}{16}=0\)
\(\Rightarrow\left(x-\frac{5}{4}\right)^2=\frac{9}{16}\)
\(\Rightarrow x-\frac{5}{4}=\frac{3}{4}\)hoặc \(x-\frac{5}{4}=-\frac{3}{4}\)
\(\Rightarrow x=2\) hoặc \(x=\frac{1}{2}\)
Nhớ vs kb với tớ nhia mn! > < ))