K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(M=\frac{\left(2.4....98.100\right).\left(51.52....99.100\right)}{\left(2.4....98.100\right).\left(1.3....97.99\right).2^{50}}\)

\(M=\frac{\left(2.1\right).\left(2.3\right)....\left(2.49\right).\left(2.50\right).51.52....99.100}{1.2......99.100.2^{50}}\)

\(M=\frac{2^{50}.\left(1.2....99.100\right)}{\left(1.2....99.100\right).2^{50}}\)\(=1\)

Vậy M =1

Chúc bạn học tốt ( -_- )

25 tháng 5 2018

\(M=\frac{51.52...99.100}{1.3...97.99.2^{50}}\)

\(=\frac{\left(1.2.3...50\right).51.52...99.100}{1.3...97.99.2^{50}.\left(1.2.3...50\right)}\)

\(=\frac{1.2.3...99.100}{1.3...97.99.\left(2.4.6...100\right)}\)

\(=\frac{1.2.3...99.100}{1.2.3...99.100}\)

24 tháng 3 2019

\(\Leftrightarrow N=\frac{\left(2.3.4....50\right)\left(2.3.4...........50\right)}{\left(1.2.3.........49\right)\left(3.4.5...........51\right)}=\frac{50.2}{51}=\frac{100}{51}\)

 \(\frac{2^2}{1.3}+\frac{3^2}{2.4}+\frac{4^2}{3.5}+....+\frac{50^2}{49.51}\)

\(=\frac{2^2-1}{1.3}+\frac{3^2-1}{2.4}+....+\frac{50^2-1}{49.51}+\frac{1}{1.3}+\frac{1}{2.4}+....+\frac{1}{49.51}\)

\(=\frac{1}{2}.\left(1+1+...+1\right)+\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{49}-\frac{1}{51}\)

Tự làm tiếp :)) 

tớ nhầm đoạn này tí :((

\(=\left(1+1+....+1\right)+\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)(49 chữ số 1)

\(=49+\frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{51}\right)\right]\)

\(=49+\left(\frac{3}{2}-\frac{1}{50}-\frac{1}{51}\right):2\)Tự tính 

22 tháng 3 2018

\(Q=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)\)

\(Q=\left(\frac{1}{2}\right).\left(\frac{2}{3}\right).\left(\frac{3}{4}\right)...\left(\frac{99}{100}\right)\)

\(Q=\frac{1}{100}\)

\(P=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)

\(P=\left(\frac{1.3}{1.3}+\frac{1}{1.3}\right)\left(\frac{2.4}{2.4}+\frac{1}{2.4}\right)\left(\frac{3.5}{3.5}+\frac{1}{3.5}\right)...\left(\frac{99.101}{99.101}+\frac{1}{99.101}\right)\)

\(P=\left(\frac{4}{1.3}\right)\left(\frac{9}{2.4}\right)\left(\frac{16}{3.5}\right)...\left(\frac{10000}{99.101}\right)\)

\(P=\left(\frac{2^2}{1.3}\right)\left(\frac{3^2}{2.4}\right)\left(\frac{4^2}{3.5}\right)...\left(\frac{100^2}{99.101}\right)\)

Bạn tự tách ra rồi bạn sẽ ra kết quả như ở dưới

\(P=\frac{201}{100}\)

3 tháng 2 2017

\(A-1=\frac{1}{1.2}+\frac{1}{2.3}..+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}\)\(=\frac{99}{100}\)

\(A=1+\frac{99}{100}=\frac{199}{100}\)

3 tháng 2 2017

=1+1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/98-1/99+1/99-1/100
=1+1/2+1/2-1/100

=199/100

4 tháng 2 2017

a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=2.\left(1-\frac{1}{99}\right)\)

\(=2.\frac{98}{99}\)

\(=\frac{196}{99}=1\frac{97}{99}\)

4 tháng 2 2017

Câu b sai rồi

4 tháng 2 2017

\(1+\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=2-\frac{1}{100}\)

\(=\frac{199}{100}\)

4 tháng 2 2017

Gọi biểu thức là A

A=1+1/2+1/2.3+1/3.4+...+1/98.99+1/99.100

A-1=1/2+1/2.3+1/3.4+...+1/98.99+1/99.100

A-1=1-1/2+1/2-1/3+1/3-1/4+...+/198-1/99+1/99-1/100

A-1=1-1/100

A-1=99/100

A=99/100+1

A=199/100