Chứng minh N^2 + 4n +8 chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu gọi tổng bên trái là A thì A chia hết cho 8 khi A ít nhất là A chia hết cho 4 và A phải là số chẵn.đấy là điều kiện cần,còn điều kiện bắt buộc thì A phải chia hết cho 8,hay bội số cua 8.
Đặt n=2k+1 với k thuộc Z
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10=
(2k+3)^2+1
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3
suy ra A+3 chia hết cho 8
suy ra đpcm
\(n^2+4n+3=n^2+n+3n+3=n\left(n+1\right)+3\left(n+1\right)=\left(n+3\right)\left(n+1\right)\)
Đặt \(n=2k+1\)
Do đó: \(n^2+4n+3=\left(n+3\right)\left(n+1\right)=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)=2\left(k+2\right)2\left(k+1\right)=4\left(k+1\right)\left(k+2\right)⋮4\)
Mà \(\left(k+1\right)\left(k+2\right)\) là tích của hai số tự nhiên liên tiếp \(\Rightarrow\left(k+1\right)\left(k+2\right)⋮2\)
\(\Rightarrow n^2+4n+3⋮2.4=8\forall n\) lẻ
1.
\(10^{28}+8=\left(10^3\right)^{25}+8=8^{25}.125^{25}+8⋮8\)
Mặt khác:
\(10^{28}+8=10^{28}-1+9=\left(10-1\right).A+9=9A+9⋮9\)
\(\)Mà \(\left(8;9\right)=1\Rightarrow10^{28}+8⋮72\)
Ta có : n2 + 4n + 5
= n2 - 1 + 4n + 6
= ( n - 1 ).( n + 1 ) + 2.( 2n + 3 )
Do n lẻ nên n - 1 và n + 1 là 2 số chẵn liên tiếp
Suy ra ( n - 1 ).( n + 1 ) chia hết cho 8
Mà 2n + 3 lẻ suy ra 2n + 3 không chia hết cho 4 suy ra 2.( 2n + 3 ) không chia hết cho 8
Suy ra ( n - 1 ).( n + 1 ) + 2.( 2n + 3 ) không chia hết cho 8
Suy ra n2 + 4n + 5 không chia hết cho 8
\(\RightarrowĐPCM\)
# Kukad'z Lee'z
Đặt n=2k+1 với k thuộc Z
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10= (2k+3)^2+1
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(cậu nên chứng minh thêm bài toán phụ này)
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm
Ta có:
n2 + 4n + 5
= n2 - 1 + 4n + 6
= (n - 1).(n + 1) + 2.(2n + 3)
Do n lẻ nên n - 1 và n + 1 là 2 số chẵn liên tiếp
=> (n - 1).(n + 1) chia hết cho 8
Mà 2n + 3 lẻ => 2n + 3 không chia hết cho 4 => 2.(2n + 3) không chia hết cho 8
=> (n - 1).(n + 1) + 2.(2n + 3) không chia hết cho 8
=> n2 + 4n + 5 không chia hết cho 8
=> đpcm
Ủng hộ mk nha ^-^
Thiếu rồi ĐK: N lẻ nha
Ta có: \(n^2+4n-5\)
\(\Leftrightarrow n^2+5n-n-5=n\left(n-1\right)+5\left(n-1\right)\)
\(\Leftrightarrow\left(n-1\right)\left(n+5\right)\left(1\right)\)
Tự giải tiếp đi