K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

BĐT cô-si, ta có:

\(\left(a+b\right)\ge2\sqrt{ab}\)

\(\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{2}{\sqrt{ab}}\)

Nhân từng vế của BĐT

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)(đpcm)

21 tháng 5 2018

Sử dụng bất đẳng thức Côsi :

 Cho cặp số a, b, ta được : \(a+b\ge2\sqrt{ab}\)              (1) 

Cho cặp số \(\frac{1}{a}+\frac{1}{b}\), ta được : \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)​ (2) 

Nhấn 2 vế (1) và (2), ta được : 

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}\cdot\frac{2}{\sqrt{ab}}=4\left(đpcm\right)\)

Vậy đẳng thức xảy ra khi  : \(\hept{\begin{cases}a=b\\\frac{1}{a}=\frac{1}{b}\end{cases}\Leftrightarrow a=b}\)

AH
Akai Haruma
Giáo viên
26 tháng 5 2019

Lời giải:

Áp dụng BĐT AM-GM:

\(4(1-a)(1-c)\leq (1-a+1-c)^2=(1+b)^2\)

\(\Rightarrow 4(1-a)(1-b)(1-c)\leq (1+b)^2(1-b)(1)\)

Mà:

\(a+2b+c-(1+b)^2(1-b)=1+b-(1+b)(1-b)=(1+b)[1-(1-b^2)]\)

\(=(1+b)b^2>0, \forall b>0\)

\(\Rightarrow a+2b+c> (1+b)^2(1-b)(2)\)

Từ \((1);(2)\Rightarrow a+2b+c> 4(1-a)(1-b)(1-c)\)

7 tháng 9 2021

1) Với x > 0 ta có:

\(x+\dfrac{1}{x}\ge2\\ \Leftrightarrow\dfrac{x^2+1}{x}\ge\dfrac{2x}{x}\\ \Leftrightarrow x^2+1\ge2x\left(\text{vì }x>0\right)\\ \Leftrightarrow x^2-2x+1\ge0\\ \Leftrightarrow\left(x-1\right)^2\ge0\left(\text{luôn đúng }\forall x>0\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\). Vậy BĐT được chứng mình với x > 0.

1: Áp dụng Bđt cosi, ta được:

\(x+\dfrac{1}{x}\ge2\cdot\sqrt{x\cdot\dfrac{1}{x}}=2\)

11 tháng 2 2018

bđt cần c/m <=>

\(\frac{1}{\left(a+c-b-c\right)^2}+\frac{\left(b+c\right)^2}{\left(a+c\right)^2\left(b+c\right)^2}+\frac{\left(a+c\right)^2}{\left(b+c\right)^2\left(a+c\right)^2}\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2-2\ge2\)(đúng , theo cô-si)

ok

2 tháng 12 2017

Viết gọn lại, ta cần chứng minh:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\right)\)

\(\Leftrightarrow\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{a+b}{ab}}\right)=\sum\dfrac{4ab}{a+b}\)

Thật vậy, ta có:

\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum\left(2\sqrt{\left(a+b\right).\dfrac{1}{4}}\right)^2=\sum a+b\)

Vậy ta cần chứng minh:

\(\sum a+b\ge\sum\dfrac{4ab}{a+b}\Leftrightarrow\sum\left(a+b\right)^2\ge\sum4ab\Leftrightarrow\sum\left(a-b\right)^2\ge0\)

Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c


27 tháng 8 2017

\(\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}\)\(\in Z\)=> ad+bc\(⋮\)bd (1). Ta không xét những trường hợp b=d=1

Trong trường hợp b=d thì ta có a+c\(⋮\) b

Ta chứng minh rằng nếu b khác d thì a+c ko chia hết cho b

Xét b>d ( trường hợp b<d chứng minh tương tự)

Giả sử b=d+k ( k >0, k\(\in Z\))

Thay b=d+k vào (1) ta có ad+c(d+k)\(⋮\)bd

=> ad+cd+ck \(⋮\)bd

=>d(a+c)+ck\(⋮\)bd

Tới đây ta thấy rằng nếu a+c\(⋮\)b thì d(a+c)\(⋮bd\)=> ck\(⋮\)bd.

Tuy nhiên (c,d)=1 và k<b nên k ko chia hết cho b, hơn nữa c ko thể chia hết cho b vì nếu thế thì a+c:b=> a:b=> (a,b)=b\(\ne1\)

Do đó ck ko chia hết cho bd, mâu thuẫn => Với b khác d thì a+c ko chia hết cho b

=> ĐPCM

27 tháng 8 2017

help me

jifugfigui