K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2018

\(\text{​​}\text{​​}\Rightarrow S=\sqrt{x}+1+\frac{1}{\sqrt{x}}\)

Áp dụng BĐT cô si 

\(\sqrt{x}+\frac{1}{\sqrt{x}}\ge1\)

\(\sqrt{x}+\frac{1}{\sqrt{x}}+1\ge2\)

\(\Rightarrow S\ge2\)

\(GTNN\) \(S=2\Leftrightarrow x=1\)

19 tháng 5 2018

Đặt \(S=\frac{x+\sqrt{x}+1}{\sqrt{x}}=t\)

=> \(x+\sqrt{x}+1=t\sqrt{x}\)

<=> \(x+\sqrt{x}\left(1-t\right)+1=0\)

Phương trình trên có nghiệm 

<=> \(\Delta=\left(1-t\right)^2-4\ge0\)

<=> \(\left(1-t\right)^2\ge4\)

<=> \(\orbr{\begin{cases}1-t\ge2\\1-t\le-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}t\le-1\\t\ge3\end{cases}}\)

Vậy Min(S) = 3

<=> x = 1 

30 tháng 7 2020

ĐKXĐ: \(\hept{\begin{cases}x\ge0\\\sqrt{x}-2\ne0\end{cases}}\)<=>\(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

Ta có \(C=\left(x-1\right)-\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}\)

<=>\(C=\left(x-1\right)-\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}\)

<=>\(C=x-1-\left(2\sqrt{x}+1\right)\)

<=>\(C=x-2\sqrt{x}-2\)

<=>\(C=\left(\sqrt{x}-1\right)^2-3\ge-3\)

Vậy GTNN của C là -3. Dấu "=" xảy ra <=> x=1 (tm ĐKXĐ)

29 tháng 7 2021

Trả lời:

a, \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}-3}{\sqrt{x}-3}-\frac{2x-\sqrt{x}-3}{x-9}\) \(\left(đkxđ:x\ge0;x\ne9\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-9}-\frac{2x-\sqrt{x}-3}{x-9}\)

\(=\frac{x-3\sqrt{x}}{x-9}+\frac{2x+3\sqrt{x}-9}{x-9}-\frac{2x-\sqrt{x}-3}{x-9}\)

\(=\frac{x-3\sqrt{x}+2x+3\sqrt{x}-9-2x+\sqrt{x}+3}{x-9}\)

\(=\frac{x+\sqrt{x}-6}{x-9}\)

9 tháng 11 2016

\(P=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)

\(=\frac{x^2-\sqrt{x}-2x\sqrt{x}+2x}{x-\sqrt{x}+1}=\frac{\left(x-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}=x-\sqrt{x}\)

\(=\left(x-\frac{2\sqrt{x}}{2}+\frac{1}{4}\right)-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{4}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN là \(\frac{-1}{4}\)đạt được khi x = \(\frac{1}{4}\)

14 tháng 8 2020

ĐKXĐ: x \(\ge\)0; x \(\ne\)1 ; x \(\ne\)4

a) P = \(\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)

P = \(\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x-2}{\sqrt{x}+1}:\frac{\sqrt{x}\left(1-\sqrt{x}\right)-\sqrt{x}+4}{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}\)

P = \(\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\cdot\frac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-x-\sqrt{x}+4}\)

P = \(\frac{\left(1-\sqrt{x}\right)\left(\sqrt{x}-2\right)}{4-x}\)

P = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

b) P < 0 <=> \(\frac{\sqrt{x}-1}{\sqrt{x}+2}< 0\)

Do \(\sqrt{x}+2>0\) => \(\sqrt{x}-1< 0\) => \(\sqrt{x}< 1\) => \(x< 1\)

kết hợp với đk => S = {x| \(0\le x< 1\)}

c) P = \(\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}\ge-\frac{1}{2}\)

Do \(\sqrt{x}+2\ge2\) => \(-\frac{3}{\sqrt{x}+2}\ge-\frac{3}{2}\) => \(1-\frac{3}{\sqrt{x}+2}\ge-\frac{1}{2}\)

Dấu "=" xảy ra <=>  x = 0

Vậy MinP = -1/2 khi x = 0