K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

 a)  9 x 4 − 10 x 2 + 1 = 0 ( 1 )

Đặt x 2 = t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  9 t 2 − 10 t + 1 = 0 ( 2 )

Giải (2):

Có a = 9 ; b = -10 ; c = 1

⇒ a + b + c = 0

⇒ Phương trình (2) có nghiệm  t 1 = 1 ; t 2 = c / a = 1 / 9

Cả hai nghiệm đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x 2 = 1  ⇒ x = 1 hoặc x = -1.

Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình (1) có tập nghiệm Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)

5 x 4 + 2 x 2 - 16 = 10 - x 2 ⇔ 5 x 4 + 2 x 2 - 16 - 10 + x 2 = 0 ⇔ 5 x 4 + 3 x 2 - 26 = 0

Đặt x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  5 t 2 + 3 t − 26 = 0 ( 2 )

Giải (2) :

Có a = 5 ; b = 3 ; c = -26

⇒ Δ = 3 2 − 4.5 ⋅ ( − 26 ) = 529 > 0

⇒ Phương trình có hai nghiệm phân biệt

Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đối chiếu điều kiện chỉ có t 1   =   2  thỏa mãn

+ Với t = 2 ⇒ ⇒ x 2 = 2  ⇒ x = √2 hoặc x = -√2.

Vậy phương trình (1) có tập nghiệm S = {-√2; √2}

c)  0 , 3 x 4 + 1 , 8 x 2 + 1 , 5 = 0 ( 1 )

Đặt  x 2 = t , điều kiện t ≥ 0.

Khi đó, (1) trở thành :  0 , 3 t 2 + 1 , 8 t + 1 , 5 = 0 ( 2 )

Giải (2) :

có a = 0,3 ; b = 1,8 ; c = 1,5

⇒ a – b + c = 0

⇒ Phương trình có hai nghiệm  t 1 = − 1  và t 2 = − c / a = − 5

Cả hai nghiệm đều không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.

Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Điều kiện xác định: x ≠ 0.

Quy đồng, khử mẫu ta được :

2 x 4 + x 2 = 1 − 4 x 2 ⇔ 2 x 4 + x 2 + 4 x 2 − 1 = 0 ⇔ 2 x 4 + 5 x 2 − 1 = 0 ( 1 )

Đặt t = x 2 , điều kiện t > 0.

Khi đó (1) trở thành :  2 t 2 + 5 t - 1 = 0 ( 2 )

Giải (2) :

Có a = 2 ; b = 5 ; c = -1

⇒ Δ = 5 2 − 4.2 ⋅ ( − 1 ) = 33 > 0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đối chiếu với điều kiện thấy có nghiệm t 1  thỏa mãn.

Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

a: =>2x^2+9x-6x-27=0

=>x(2x+9)-3(2x+9)=0

=>(2x+9)(x-3)=0

=>x=3 hoặc x=-9/2

b: =>-10x^2+6x-5x+3=0

=>-2x(5x-3)-(5x-3)=0

=>(5x-3)(-2x-1)=0

=>x=-1/2 hoặc x=5/3

c: =>-x^3+2x^2-x^2+4=0

=>-x^2(x-2)-(x-2)(x+2)=0

=>(x-2)(-x^2-x-2)=0

=>x-2=0

=>x=2

d: =>(x^3+8)-4x(x+2)=0

=>(x+2)(x^2-2x+4)-4x(x+2)=0

=>(x+2)(x^2-6x+4)=0

=>x=-2 hoặc \(x=3\pm\sqrt{5}\)

8 tháng 2 2023

kh hiểu bn ơi

8 tháng 2 2023

vậy mik đăng lại

23 tháng 4 2017

Ta có:  2 x 2 + 3 2  -10 x 3  -15x =0 ⇔  2 x 2 + 3 2  - 5x(2 x 2  +3)=0

⇔ (2 x 2 +3)( 2 x 2  +3 - 5x) = 0 ⇔ (2 x 2  +3)( 2 x 2  - 5x +3)=0

Vì 2 x 2   ≥ 0 nên 2 x 2  +3 > 0

Suy ra : 2x2 - 5x +3=0

∆ =  - 5 2 -4.2.3 =25 -24=1 > 0

∆ = 1  = 1

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

vậy phương trình đã cho có 2 nghiệm: x1 = 3/2 ; x2 = 1

12 tháng 2 2018

16 tháng 3 2018

a) 8( 3x - 2 ) - 14x = 2( 4 – 7x ) + 15x

⇔ 24x – 16 -14x = 8 – 14x + 15x

⇔ 10x -16 = 8 + x

⇔ 9x = 24

⇔ x = 24/9

b) ( 3x – 1 )( x – 3 ) – 9 + x2 = 0

⇔ (3x -1)( x – 3) + (x - 3)( x + 3) = 0

⇔ (x - 3)(3x - 1 + x - 3) = 0

⇔ (x - 3)(4x - 4) = 0

c) |x - 2| = 2x - 3

TH1: x - 2 ≥ 0 ⇔ x ≥ 2

Khi đó: x - 2 = 2x – 3

⇔ 2x – x = -2 + 3

⇔ x = 1 (không TM điều kiện x ≥ 2)

TH2: x – 2 < 0 ⇔ x < 2

Khi đó: x-2 = -(2x – 3)

⇔ x – 2 = -2x + 3

⇔ 3x = 5

⇔ x = 5/3 ( TM điều kiện x < 2)

MTC: x(x-2)

ĐKXĐ: x ≠ 0;x ≠ 2

Đối chiếu với ĐKXĐ thì pt có nghiệm x = - 1

6 tháng 2 2019

13 tháng 8 2021

Ta có: \(2x^2+3x+\sqrt{2x^2+3x+9}=33\)

   \(\Leftrightarrow\left(2x^2+3x-27\right)+\left(\sqrt{2x^2+3x+9}-6\right)=0\)

   \(\Leftrightarrow\left(2x+9\right)\left(x-3\right)+\dfrac{2x^2+3x-27}{\sqrt{2x^2+3x+9}+6}=0\)

   \(\Leftrightarrow\left(2x+9\right)\left(x-3\right)+\dfrac{\left(2x+9\right)\left(x-3\right)}{\sqrt{2x^2+3x+9}+6}=0\)

   \(\Leftrightarrow\left(2x+9\right)\left(x-3\right)\left(1+\dfrac{1}{\sqrt{2x^2+3x+9}+6}\right)=0\)

   \(\Leftrightarrow\left[{}\begin{matrix}2x+9=0\\x-3=0\\1+\dfrac{1}{\sqrt{2x^2+3x+9}+6}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{2}\\x=3\\1+\dfrac{1}{\sqrt{2x^2+3x+9}+6}=0\left(1\right)\end{matrix}\right.\)

Giải (1) ta có:

\(\left(1\right)\Leftrightarrow\dfrac{1}{\sqrt{2x^2+3x+9}+6}=-1\)

     \(\Leftrightarrow1=-\sqrt{2x^2+3x+9}-6\)

     \(\Leftrightarrow7=-\sqrt{2x^2+3x+9}\)

     \(\Leftrightarrow49=2x^2+3x+9\)

      \(\Leftrightarrow2x^2+3x-40=0\)

Ta có:Δ=32-4.2.(-40)=329

Vì Δ>0 nên phương trình có 2 nghiệm phân biệt là:

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-3+\sqrt{329}}{4}\\x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-3-\sqrt{329}}{4}\end{matrix}\right.\)

Vậy phương trình có 4 nghiệm là ....

24 tháng 12 2018

9x4 – 10x2 + 1 = 0 (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó (1) trở thành : 9t2 – 10t + 1 = 0 (2)

Giải (2):

Có a = 9 ; b = -10 ; c = 1

⇒ a + b + c = 0

⇒ Phương trình (2) có nghiệm t1 = 1; t2 = c/a = 1/9.

Cả hai nghiệm đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x2 = 1 ⇒ x = 1 hoặc x = -1.

Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình (1) có tập nghiệm Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9