Rút gọn tổng: S = 1 + 2.3 + 3.32 + 4.33 +....+101.3100
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
3S= 3+2.32+3.33+...+101.3101
<=> 2S= 101.3101-(3100+399+398+....+3)-1 (1)
Ta có
A=3100+399+...+3
<=> 3A=3101+3100+...+32
<=> A=\(\frac{3^{101^{ }}-3}{2}\)(2)
Thay (2) vào (1) ta có
S= \(\frac{101.3^{101}-\frac{3^{101}-3}{2}-1}{2}\)
<=> S=\(\frac{3^{101}.201-1}{2}.\frac{1}{2}\)=\(\frac{3^{101}.201-1}{4}\)
Mik nghĩ vậy k bt đúng k