K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

\(2a-b=\frac{2}{3}\left(a+b\right)\)

\(2a-b=\frac{2}{3}a+\frac{2}{3}b\)

\(2a-\frac{2}{3}a-b-\frac{2}{3}b=0\)

\(\frac{4}{3}a-\frac{5}{3}b=0\)

\(\Rightarrow4a-5b=0\)

\(\Rightarrow a=\frac{5}{4}b\) Thay vào A 

\(A=\frac{a^4+5^4}{b^4+4^4}=\frac{\left(\frac{5}{4}b\right)^4+5^4}{b^4+4^4}=\left(\frac{5^4\cdot b^4}{4^4}+5^4\right)\div\left(b^4+\text{4^4}\right)\)

\(=\frac{5^4\cdot b^{\text{4}}+5^4\cdot\text{4^4}}{4^4.\left(b^4+\text{4^4}\right)}=\frac{5^4\left(b^4+4^4\right)}{4^4\left(b^4+4^4\right)}=\frac{5^4}{4^4}\)

Mấy bạn xem xong cho mình kết quả đúng hay sai nha <3 ^_^

8 tháng 8 2017

Dảnh àk =))

8 tháng 8 2017

Cứ đăng đi - úng hộ ^^

31 tháng 10 2017

đúng rồi

1 tháng 11 2017

 chó điên

10 tháng 1 2020

Áp dụng BĐT Cauchy: \(\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)\)

\(=\left[\left(a^2+\frac{1}{4}\right)+b+\frac{1}{2}\right]\left[\left(b^2+\frac{1}{4}\right)+a+\frac{1}{2}\right]\)

\(\ge\left(a+b+\frac{1}{2}\right)^2\) (Vì áp dụng BĐT Cauchy: \(a^2+\frac{1}{4}\ge2\sqrt{a^2.\frac{1}{4}}=a;b^2+\frac{1}{4}\ge b\))

Vậy ta chứng minh: \(\left(a+b+\frac{1}{2}\right)^2\ge\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)

Ta có: \(VT-VP=\left(a-b\right)^2\ge0\)

Vậy BĐT (*) đúng \(\Rightarrow\) \(\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)\ge\left(a+b+\frac{1}{2}\right)^2\ge\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)(đpcm)

10 tháng 1 2020

Bổ sung điều kiện a, b là các số thực dương nha! Và:

"Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)"

28 tháng 11 2016

Bài 2:

a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)

Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)

\(\Rightarrow6x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)

\(\Rightarrow4x+12=6x\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=6\)

Vậy x = 6

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)

\(=\frac{14-5}{8}=\frac{9}{8}\)

+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)

+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)

+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)

Vậy ...

c) \(5^x+5^{x+1}+5^{x+2}=3875\)

\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)

\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)

\(\Rightarrow5^x.31=3875\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

Vậy x = 3

28 tháng 11 2016

@@ good :D

23 tháng 3 2017

Ta có:

\(A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right)=\frac{1}{\left(x+y\right)^3}.\frac{\left(y^2+x^2\right)\left(x+y\right)\left(y-x\right)}{x^4y^4}=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}\)

\(B=\frac{1}{\left(x+y\right)^4}.\left(\frac{1}{x^3}-\frac{1}{y^3}\right)=\frac{\left(y-x\right)\left(y^2+xy+x^2\right)}{\left(x+y\right)^4x^3y^3}\)

\(C=\frac{1}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)=\frac{y-x}{\left(x+y\right)^4x^2y^2}\)

\(\Rightarrow A+B+C=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}+\frac{\left(y-x\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)^4x^3y^3}+\frac{\left(y-x\right)}{\left(x+y\right)^4x^2y^2}\)

\(=\frac{y^3-x^3}{x^4y^4\left(x+y\right)^2}\)

b/ Thế vô rồi tính nhé

23 tháng 3 2017

Đoạn gần cuối thay y-x= 1 luôn 

\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2x^4y^4}+\left(\frac{\left(x+y\right)^2}{\left(x+y\right)^4\left(xy\right)^3}\right)\\ \)

\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2\left(xy\right)^4}+\frac{1}{\left(x+y\right)^2\left(xy\right)^3}\)

\(A+B+C=\frac{x^2+y^2+xy}{\left[\left(x+y\right)xy\right]^2\left(xy\right)^2}\)  giờ mới thay không biết đã tối giản chưa

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)

\(\begin{array}{l}{\left( {\frac{{ - 1}}{2}} \right)^5} = \frac{{{{\left( { - 1} \right)}^5}}}{{{2^5}}} = \frac{{ - 1}}{{32}};\\{\left( {\frac{{ - 2}}{3}} \right)^4} = \frac{{{{\left( { - 2} \right)}^4}}}{{{3^4}}} = \frac{{16}}{{81}};\\{\left( { - 2\frac{1}{4}} \right)^3} = {\left( {\frac{{ - 9}}{4}} \right)^3} = \frac{{{{\left( { - 9} \right)}^3}}}{{{4^3}}} = \frac{{-729}}{{64}};\\{\left( { - 0,3} \right)^5} = {\left( {\frac{{ - 3}}{{10}}} \right)^5} = \frac{{ - 243}}{{100000}};\\{\left( { - 25,7} \right)^0} = 1\end{array}\)

b)

\(\begin{array}{l}{\left( { - \frac{1}{3}} \right)^2} = \frac{1}{9};\\{\left( { - \frac{1}{3}} \right)^3} = \frac{{ - 1}}{{27}};\\{\left( { - \frac{1}{3}} \right)^4} = \frac{1}{{81}};\\{\left( { - \frac{1}{3}} \right)^5} = \frac{{ - 1}}{{243}}.\end{array}\)

Nhận xét:

+ Luỹ thừa của một số hữu tỉ âm với số mũ chẵn là một số hữu tỉ dương.

+  Luỹ thừa của một số hữu tỉ âm với số mũ lẻ là một số hữu tỉ âm.