Cho \(\Delta\)ABC cân tại A ( GócA < 90độ), Vexd BD \(\perp\)AC và CE \(\perp\)AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: \(\Delta ABD=\Delta ACE\)
b) Chứng minh: \(\Delta AED\)cân
c) Chứng minh AH là đường trung trực của ED
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hai tam giác vuông ABD và ACE ta có:
AB = AC (gt)
 là góc chung
Vậy \(\Delta ABD=\Delta ACE\) (cạnh huyền-góc nhọn) (1)
b) Từ (1) \(\Rightarrow AE=AD\)(2 cạnh tương ứng)
nên \(\Delta AED\) là tam giác cân
c) Ta có : BD \(\perp AC\) (gt)
\(CE\perp AB\) (gt)
nên BD và CE là hai đường cao của \(\Delta ABC\)
Vì H là giao điểm của hai đường cao BD và CE nên AH cũng là đường cao của ED
Mà trong tam giác cân AED đường cao cũng là đường trung trực nên AH là đường trung trực của ED
d) Xét hai tam giác vuông CDK và CDB ta có :
DK = DB (gt)
CD là cạnh góc vuông chung
Vậy \(\Delta CDK=\Delta CDB\)(cạnh góc vuông-cạnh góc vuông) (2)
Từ (2) \(\Rightarrow CB=CK\)(2 cạnh tương ứng) (3)
Từ (1) \(\Rightarrow\) DB = EC (2 cạnh tương ứng)
mà DK = DB (gt)
\(\Rightarrow EC=DK\)(4)
Xét hai tam giác vuông ECB và DKC ta có:
CB = CK (3)
EC = DK (4)
Vậy \(\Delta ECB=\Delta DKC\) (cạnh góc vuông-cạnh huyền) (5)
Từ (5) \(\Rightarrow\widehat{ECB}\) \(=\widehat{DKC}\) (2 góc tương ứng)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
nên BD=CE; AD=AE
Xét ΔBCD và ΔCBE có
BC chung
CD=BE
BD=CE
DO đó: ΔBCD=ΔCBE
c: Xét ΔBHE vuông tại E và ΔCHD vuông tại D có
BE=CD
\(\widehat{EBH}=\widehat{DCH}\)
Do đó: ΔBHE=ΔCHD
d: Ta có: ΔBHE=ΔCHD
nên HB=HC
Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>BA=BE và DA=DE
=>BD là trung trực của AE
c: Xét ΔDAK vuông tạiA và ΔDEC vuông tại E có
DA=DE
góc ADK=góc EDC
=>ΔDAK=ΔDEC
=>DK=DC
=>ΔDKC cân tại D
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
nên AD=AE
hay ΔADE cân tại A
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
AE=AD
Do đó ΔAEH=ΔADH
Suy ra: HE=HD
hay H nằm trên đường trung trực của ED(1)
Ta có: AE=AD
nên A nằm trên đường trung trực của ED(2)
Từ (1) và (2) suy ra AH là đường trung trực của ED
Xét △AMD và △DMC
AB=AC(giả thuyết)
Cạnh AM là cạnh chung
BM= CM ( M là trung điểm của cạnh BC)
=> △AMD=△DMC
Sorry bạn nhé mk chỉ bt làm câu a thui ☹
a, xét tam giác abd và tam giác ace có
góc adb=góc aec =90o (gt)
góc a chung
ab=ac (do tam giác abc cân -gt)
suy ra tam giác abd= tam giác ace (cạnh huyền - góc nhọn)
b, có ad=ae (do tam giác abd = tam giác ace-cmt)
suy ra tam giác aed cân tại a
c, có ad=ae (cmt)
suy ra a thuộc đường trung trực của ed
xét tam giác aeh và tam giác adh có
góc aeh = góc adh=90o (gt)
ad=ae (cmt)
ah cạnh huyền chung
suy ra tam giác aeh=tam giác adh (cạnh huyền cạnh góc vuông)
suy ra hd=he
suy ra h thuộc đường trung trực của ed
suy ra ah là đường trung trực của ed
d,xét tam giác bdc và tam giác kdc có
bd=dk (gt)
góc bdc = góc cdk (=90o-gt)
cd chung
suy ra tam giác bdc = tam giác kdc (c.g.c)
suy ra góc dbc = góc dkc (1)
có góc bdc= góc abc - góc abd
góc ecb= góc acb - góc ace
mà góc abc=góc acb (do tam giác abc cân tại a -gt)
góc abd=góc ace (do tam giác abd=tam giác ace-cmt)
suy ra góc dbc= góc ecb (2)
từ(1)(2) suy ra góc ecb = góc dkc