K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : abc = 1 

<=> a = \(\frac{1}{bc}\)

\(b=\frac{1}{ac}\)

\(c=\frac{1}{ab}\)

Ta có : \(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(\frac{1}{bc}+abc\right)\left(\frac{1}{ac}+abc\right)\left(\frac{1}{ab}+abc\right)\)

Áp dụng bđt cô si ta có : 

\(\frac{1}{bc}+abc\ge2\sqrt{\frac{abc}{bc}}=2\sqrt{a}\)

\(\frac{1}{ac}+abc\ge2\sqrt{b}\)

\(\frac{1}{ab}+abc\ge2\sqrt{c}\)

Nên : \(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(\frac{1}{bc}+abc\right)\left(\frac{1}{ac}+abc\right)\left(\frac{1}{ab}+abc\right)\)\(\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8.1=8\) 

Vây Pmin = 8 khi a = b = c = 1

13 tháng 5 2018

Hai ô tô cùng khởi hành 1 lúc đi từ

A đến B dài 240km, vì mỗi giờ

ô tô thứ 1 đi nhanh hơn ô tô thứ 2 là 12km nên nó đến trước ô tô thứ 2 là 1h40'. Tí

nh vận tốc của mỗi ô tô?

25 tháng 9 2019

trả lời lẹ cho tui cấy

15 tháng 5 2018

Áp dụng BĐT Cauchy ta có:

    \(a+1\ge2\sqrt{a.1}=2\sqrt{a}\)

   \(b+1\ge2\sqrt{b.1}=2\sqrt{b}\)

  \(c+1\ge2\sqrt{c.1}=2\sqrt{c}\)

Dấu "="  xảy ra  <=>    \(a=b=c=1\)

  \(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)   \(\ge\)\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8.\sqrt{abc}=8\) 

Vậy  Min P = 8 <=>  a = b = c = 1

15 tháng 5 2018

Cauchy :

\(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8.\sqrt{abc}=8\)

Đẳng thức xảy ra <=> a = b = c = 1 

24 tháng 5 2020

Ta có: (a+b)(a+c)=a2+ac+ab+bc=a(a+b+c)+bc=1/bc+bc

Mà b,c >0 nên 1/bc+bc>=2(tổng hai số nghịch đảo)

=> P>=2

Vậy GTNN của P=2

27 tháng 1 2019

Do a,b,c có vai trò hoán vị vòng quang.Ta dự đoán dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Ta có: \(A=\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}=\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{9abc}\right)+\frac{8}{9abc}\)

\(\ge\frac{4}{a^2+b^2+c^2+9abc}+\frac{8}{9abc}=\frac{4}{a^2+b^2+c^2+9abc}+\frac{4}{9abc}+\frac{4}{9abc}\)

\(\ge\frac{\left(2+2+2\right)^2}{a^2+b^2+c^2+27abc}=\frac{36}{a^2+b^2+c^2+27abc}\) (Cauchy-Schwarz dạng Engel)

\(\ge\frac{36}{a^2+b^2+c^2+\left(a+b+c\right)^3}=\frac{36}{a^2+b^2+c^2+1}+\frac{a^2+b^2+c^2+1}{36}-\frac{a^2+b^2+c^2+1}{36}\)(Cô si kết hợp giả thiết a + b + c = 1)

\(\ge2-\frac{a^2+b^2+c^2+1}{36}\)

Tới đây bí:v

9 tháng 12 2019

Tham khảo: Câu hỏi của Lê Thành An - Toán lớp 9 - Học toán với OnlineMath