giúp m tìm x
(-7)x=\(\frac{1}{49}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐK: \(x\ge0,x\ne49\)
\(M=\frac{3\left(\sqrt{x}+7\right)-\left(\sqrt{x}-7\right)}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}:\frac{2\sqrt{x}+6}{x-49}\)
\(=\frac{2\sqrt{x}+28}{x-49}.\frac{x-49}{2\sqrt{x}+6}=\frac{2\sqrt{x}+28}{2\sqrt{x}+6}\)
b. M nguyên \(\Leftrightarrow\frac{2\sqrt{x}+28}{2\sqrt{x}+6}\in Z\Rightarrow\frac{2\sqrt{x}+6+22}{2\sqrt{x}+6}\in Z\Rightarrow1+\frac{22}{2\sqrt{x}+6}\in Z\Rightarrow\frac{22}{2\sqrt{x}+6}\in Z\Rightarrow\left(2\sqrt{x}+6\right)\inƯ\left(22\right)\)
Đến đây đã rất dễ dàng rồi nhé ^^
đề không cho tìm x NGUYÊN để m nguyên mà chỉ tìm các điểm x để m nguyên thôi
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne49\end{cases}}\)
\(B=\left(\frac{\sqrt{x}}{x-49}-\frac{\sqrt{x}-7}{x+7\sqrt{x}}\right):\)\(\frac{2\sqrt{x}-7}{x+7\sqrt{x}}+\frac{\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}-\frac{\left(\sqrt{x}-7\right)^2}{\sqrt{x}\left(\sqrt{x}+7\right)\left(\sqrt{x}-7\right)}\right)\)\(:\frac{2\sqrt{x}-7}{\sqrt{x}\left(\sqrt{x}+7\right)}-\frac{\sqrt{x}}{\sqrt{x}-7}\)
\(\frac{x-x+14\sqrt{x}-49}{\sqrt{x}\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}:\frac{2\sqrt{x}-7}{\sqrt{x}\left(\sqrt{x}+7\right)}\)\(-\frac{\sqrt{x}}{\sqrt{x}-7}\)
\(=\frac{7\left(2\sqrt{x}-7\right)\sqrt{x}\left(\sqrt{x}+7\right)}{\sqrt{x}\left(\sqrt{x}+7\right)\left(\sqrt{x}-7\right)\left(2\sqrt{x}-7\right)}\)\(-\frac{\sqrt{x}}{\sqrt{x}-7}\)
\(=\frac{7}{\sqrt{x}-7}-\frac{\sqrt{x}}{\sqrt{x}-7}=\frac{7-\sqrt{x}}{\sqrt{x}-7}=-1\)
Lời giải:
\(\frac{6^{x+3}-6^{x+1}+6^x}{211}=\frac{7^{2x}+7^{2x+1}+7^{2x-3}}{8\frac{1}{49}}\)
\(\Leftrightarrow \frac{6^x(6^3-6+1)}{211}=\frac{7^{2x}(1+7+\frac{1}{7^3})}{\frac{393}{49}}\)
\(\Leftrightarrow 6^x=7^{2x}.\frac{915}{917}\)
\(\Leftrightarrow (\frac{6}{49})^x=\frac{915}{917}\)
\(\Rightarrow x=\log_{\frac{6}{49}}\frac{915}{917}\)
Trần Linh: cách giải này gây khó hiểu cho bạn ở dòng cuối đúng không? Nếu không dùng log thì không thể tìm ra kết quả cuối cùng theo cách lớp 7 do nghiệm quá xấu. Do đó, bạn hãy xem lại đề xem có nhầm dấu hay viết sai ở chỗ nào không.
\(\frac{1+0,6-\frac{3}{7}}{\frac{8}{3}+\frac{8}{5}-\frac{8}{7}}=\frac{\frac{3}{3}+\frac{3}{5}-\frac{3}{7}}{\frac{8}{3}+\frac{8}{5}-\frac{8}{7}}=\frac{3.\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\right)}{8.\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\right)}=\frac{3.1}{8.1}=\frac{3}{8}\)
\(\frac{\frac{1}{3}+0,25-\frac{1}{5}+0,125}{\frac{7}{6}+\frac{7}{8}-0,7+\frac{7}{16}}=\frac{\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{8}}{\frac{7}{6}+\frac{7}{8}-\frac{7}{10}+\frac{7}{16}}=\frac{1.\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{8}\right)}{7.\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{8}\right)}=\frac{1.1}{7.1}=\frac{1}{7}\)
=>\(\frac{3}{8}-\frac{1}{7}=\frac{13}{56}\)
(\(\frac{1}{4.9}+\frac{1}{9.14}+...+\frac{1}{44.49}\)).\(\frac{1-3-5-...-49}{89}\)
= \(\frac{1}{5}.\left(\frac{5}{4.9}+\frac{5}{9.14}+...+\frac{5}{45.49}\right).\frac{1-3-5-...-49}{89}\)
\(=\frac{1}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}\right).\frac{1-\frac{24.\left(49+3\right)}{2}}{89}\)
\(=\frac{1}{5}.\left(\frac{1}{4}-\frac{1}{49}\right).\left(-7\right)\)
\(=-\frac{9}{28}\)
Có chỗ ghi nhầm 44 thành 45. Tự sửa nhé
Bài 2/ a/
|2x + 3| = x + 2
Điều kiện \(x\ge-2\)
Với x < - 1,5 thì ta có
- 2x - 3 = x + 2
<=> 3x = - 5
<=> \(x=-\frac{5}{3}\)
Với \(x\ge-1,5\)thì ta có
2x + 3 = x + 2
<=> x = - 1
a) \(\left(x^2+7\right)\left(x^2-49\right)< 0\)
\(\left(x^2+7\right)\left(x-7\right)\left(x+7\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x-7>0\\x+7< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-7< 0\\x+7>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>7\\x< -7\end{cases}}\) hoặc \(\hept{\begin{cases}x< 7\\x>-7\end{cases}}\)
\(\Leftrightarrow-7< x< 7\)
vậy....
a, Vì x^2+7 > 0
=> x^2-49 < 0
=> x^2 < 49
=> -7 < x < 7
b, => x^2-7 >= 0 ; x^2-49 >= 0 hoặc x^2-7 < = 0 ; x^2 - 49 < = 0
=> x^2 > 49 hoặc x^2 < 7
=> x > 7 hoặc x < - 7 hoặc - \(\sqrt{7}< x< \sqrt{7}\)
Tk mk nha
\(\frac{\left(-7\right)^{^{x-1}}}{49}\)=\(\frac{-49}{49}\)
=>\(\left(-7\right)^{^{x-1}}\)=-49
\(\left(-7\right)^{^{x-1}}\)=\(\left(-7\right)^2\)
=> x-1 = 2
x = 2+1
x = 3
\(\left(-7\right)^x=\frac{1}{49}\)
\(\left(-7\right)^x=\frac{1}{\left(-7\right)^2}\)
\(\left(-7\right)^x=\left(-7\right)^0:\left(-7\right)^2\)
\(\left(-7\right)^x=\left(-7\right)^{0-2}\)
\(\left(-7\right)^x=\left(-7\right)^{-2}\)
Vậy \(x=-2\)