x-6/2012+x-8/2018=x-2000/18+x-2005/13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\dfrac{x-2012}{8}+\dfrac{x-2008}{6}+\dfrac{x-2005}{5}=10-\dfrac{x-2004}{4}\)
\(\Leftrightarrow\left(\dfrac{x-2012}{8}-1\right)+\left(\dfrac{x-2008}{6}-2\right)+\left(\dfrac{x-2005}{5}-3\right)+\left(\dfrac{x-2004}{4}-4\right)=0\)\(\Leftrightarrow\dfrac{x-2020}{8}+\dfrac{x-2020}{6}+\dfrac{x-2020}{5}+\dfrac{x-2020}{4}=0\)
\(\Leftrightarrow\left(x-2020\right).\left(\dfrac{1}{8}+\dfrac{1}{6}+\dfrac{1}{5}+\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x-2020=0\Leftrightarrow x=2020\)
Vậy x = 2020
\(\frac{x-18}{2018}+\frac{x-14}{1007}+\frac{x-13}{671}=-6\)
\(\Rightarrow\frac{x-18}{2018}+1+\frac{x-14}{1007}+2+\frac{x-13}{671}+3=-6+6\)
\(\Rightarrow\frac{x-2000}{2028}+\frac{x-2000}{1007}+\frac{x-2000}{671}=0\)
\(\Rightarrow\left(x-2000\right)\left(\frac{1}{2018}+\frac{1}{1007}+\frac{1}{671}\right)=0\)
Vì \(\frac{1}{2018}+\frac{1}{1007}+\frac{1}{671}\ne0\)
=> x - 2000 = 0
=> x = 2000
A = 1 + 2 + 3 + ... + 2018
= ( 1 + 2018 ) + ( 2 + 2017) + ... + ( 1009 + 1010 )
= 2019 + 2019 + ... + 2019 ( có 1009 số 2019 )
= 2019 x 1009 = 2037171
B = 1 + 3 + 5 + ... + 2017
= ( 1 + 2017 ) + ( 3 + 2015 ) + ... + ( 1007 + 1010) + 1009
= 2018 + 2018 + ... + 2018 + 1009 (có 504 số 2018)
= 2018 x 504 + 1009 = 1018081
Còn lại làm giống ý trên .
2009 . 2001 < 2010 .2010 2010 .2007 > 2005. 2009 2011.1998 > 1996.2000 2012. 2000> 2010. 1990 dấu chấm là dấu nhân cho mik k đi ban mik cm
# Giải :
|x - 2| - 4 = 6
|x - 2| = 6 + 4
|x - 2| = 12
=> x - 2 = 12 hoặc x - 2 = -12
+) x - 2 = 12
=> x = 14
+) x - 2 = -12
=> x = 10
Vậy x = 14 hoặc x = 10
401 . ( x - 3 ) = 20052019 : 20052018
401 . (x - 3) = 2005
x - 3 = 2005 : 401
x - 3 = 5
x = 5 + 3
x = 8
Vậy x = 8
#By_Ami
a)=(3/8+10/16)+(7/12+10/24)
=1+1=2
c)=(4/6+14/6)+(7/13+19/13)+(17/9+1/9)
=3+2+2=7
mk chỉnh lại đề nha
\(\frac{x-6}{2012}+\frac{x-8}{2010}=\frac{x-2000}{18}+\frac{x-2005}{13}\)
\(\Leftrightarrow\)\(\frac{x-6}{2012}-1+\frac{x-8}{2010}-1=\frac{x-2000}{18}-1+\frac{x-2005}{13}-1\)
\(\Leftrightarrow\)\(\frac{x-2018}{2012}+\frac{x-2018}{2010}=\frac{x-2018}{18}+\frac{x-2018}{13}\)
\(\Leftrightarrow\)\(\left(x-2018\right)\left(\frac{1}{2012}+\frac{1}{2010}-\frac{1}{18}-\frac{1}{13}\right)=0\)
\(\Leftrightarrow\)\(x-2018=0\) (1/2012 + 1/2010 - 1/18 - 1/13 # 0)
\(\Leftrightarrow\)\(x=2018\)
Vậy...