K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

\(\frac{x-18}{2018}+\frac{x-14}{1007}+\frac{x-13}{671}=-6\)

\(\Rightarrow\frac{x-18}{2018}+1+\frac{x-14}{1007}+2+\frac{x-13}{671}+3=-6+6\)

\(\Rightarrow\frac{x-2000}{2028}+\frac{x-2000}{1007}+\frac{x-2000}{671}=0\)

\(\Rightarrow\left(x-2000\right)\left(\frac{1}{2018}+\frac{1}{1007}+\frac{1}{671}\right)=0\)

Vì \(\frac{1}{2018}+\frac{1}{1007}+\frac{1}{671}\ne0\)

=> x - 2000 = 0

=> x           = 2000

15 tháng 3 2020

                                                              Bài giải

\(\frac{2-x}{2015}+\frac{3-x}{1007}+\frac{4-x}{671}=\frac{2005-x}{2}\)

\(( \frac{2-x}{2015}+1 )+ (\frac{3-x}{1007}+2 )+ ( \frac{4-x}{671}+3 )=\frac{2005-x}{2}+6\)

\(\frac{2017-x}{2015}+\frac{2017-x}{1007}+\frac{2017-x}{671}=\frac{2017-x}{2}\)

\(\frac{2017-x}{2015}+\frac{2017-x}{1007}+\frac{2017-x}{671}-\frac{2017-x}{2}=0\)

\((2017-x)(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{2})=0\)

Do \(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{2}\ne0\)

\(\Rightarrow\text{ }2017-x=0\)

\(\Rightarrow\text{ }x=2017\)

31 tháng 12 2016

\(\frac{1-x}{2015}+\frac{2-x}{1007}+\frac{3-x}{671}=\frac{1992-x}{4}\)

\(\Rightarrow\frac{1-x}{2015}+1+\frac{2-x}{1007}+2+\frac{3-x}{671}+3=\frac{1992-x}{4}+6\)

\(\Rightarrow\frac{2016-x}{2015}+\frac{2016-x}{1007}+\frac{2016-x}{671}=\frac{2016-x}{4}\)

\(\Rightarrow\frac{2016-x}{2015}+\frac{2016-x}{1007}+\frac{2016-x}{671}-\frac{2016-x}{4}=0\)

\(\Rightarrow\left(2016-x\right)\left(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{4}\right)=0\)

\(\Rightarrow2016-x=0\).Do \(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{4}\ne0\)

\(\Rightarrow x=2016\)

4 tháng 8 2017

\(A=\left|2x-\dfrac{1}{3}\right|+1007\)

\(\left|2x-\dfrac{1}{3}\right|\ge0\)

\(\Rightarrow\left|2x-\dfrac{1}{3}\right|+1007\ge1007\)

Dấu "=" xảy ra khi:

\(\left|2x-\dfrac{1}{3}\right|=0\Rightarrow2x=\dfrac{1}{3}\Rightarrow x=\dfrac{1}{6}\)

\(\Rightarrow MIN_A=1007\) khi \(x=\dfrac{1}{6}\)

B tương tự

\(C=\left|2018-x\right|+\left|2017-x\right|\)

\(C=\left|2018-x\right|+\left|x-2017\right|\)

Áp dụng BĐT:

\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

\(\Rightarrow C\ge\left|2018-x+x-2017\right|\)

\(C\ge1\)

Dấu "=" xảy ra khi:

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}2018-x\ge0\Rightarrow x\le2018\\x-2017\ge0\Rightarrow x\ge2017\end{matrix}\right.\\\left\{{}\begin{matrix}2018-x< 0\Rightarrow x>2018\\x-2017< 0\Rightarrow x< 2017\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow2017\le x\le2018\)

D tương tự

16 tháng 3 2018

\(5-\frac{x}{2010}+4-\frac{x}{2011}+3-\frac{x}{2012}=6-\frac{x}{2009}+1-\frac{x}{1007}.\)

\(\left(5+4+3\right)-x.\frac{1}{2010}-x.\frac{1}{2011}-x\frac{1}{2012}=\left(6+1\right)-x.\frac{1}{2009}-x\frac{1}{1007}\)

\(12-x.\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)=7-x.\left(\frac{1}{2009}+\frac{1}{1007}\right)\)

\(-x.\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)+x.\left(\frac{1}{2009}+\frac{1}{1007}\right)=7-12\)

\(x.\left(\frac{-1}{2010}-\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2009}+\frac{1}{1007}\right)=-5\)

\(x=\frac{-5}{\frac{-1}{2010}-\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2009}+\frac{1}{1007}}\)

10 tháng 11 2016

( x - ​ ​\(\sqrt{3}\) )\(^{2016}\) \(\ge\) 0 với mọi x . Kí hiệu là 1

(y\(^2\) - 3 )\(^{2018}\)\(\ge\) 0 với mọi y . Kí hiệu là 2

Từ 1 và 2 suy ra ( x - ​ ​\(\sqrt{3}\) )\(^{2016}\) = 0 và (y\(^2\) - 3 )\(^{2018}\) = 0 . Kí hiệu là 3

Từ 3 suy ra x - \(\sqrt{3}\) = 0 suy ra x = \(\sqrt{3}\)

y\(^2\)- 3 = 0 suy ra y\(^2\) = 0 suy ra y =..........

2. Trên tử đặt 3 ra ngoài. Dưới mẫu đặt 11 ra ngoài rồi triệt tiêu.

3. 17^18 = (17^3)^6 = 4913^6

63^12 = (63^2)^6 = 3969 ^6

Vì 4913 > 3969 nên 4913^6 > 3969^6 hay 17^18>63^12

 
10 tháng 11 2016

nhanh giúp mình