K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

M = 1/3^1 + 2/3^2 + .3/3^3 + .. + 100/3^100 
1/3*M= 1/3^2 + 2/3^3 + 3/3^4 + .. + 100/3^101 
=> M- 1/3*C = 1/3^1 + (2/3^2 - 1/3^2) + (3/3^3 - 2/3^3) + .. + (100/3^100 - 99/3^100) - 100/3^101 
=> 2/3*M = 1/3^1 + 1/3^2 + 1/3^3 + .. + 1/3^100 - 100/3^101 
+ xét S= 1/3^1 + 1/3^2 + 1/3^3 + .. + 1/3^100 tương tự 
1/3*S = 1/3^2 + 1/3^3 + 1/3^4 + .. + 1/3^101 
=> S - 1/3*S = 1/3^1 - 1/3^101 
<=> 2/3*S = (1/3 - 1/3^101) 
<=> S = 3/2*(1/3 - 1/3^101) thay vào C ta có 
2/3*M = 3/2*(1/3 - 1/3^101) - 100/3^101 
<> M = 9/4*(1/3 - 1/3^101) - 150/3^101 
<>M = 3/4 - 9/4*1/3^101 - 150/3^101 < 3/4

Thấy hay thì tíck cho mk 3 cái

8 tháng 5 2018

\(M=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)

\(3M=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)

\(3M-M=1+\left(\frac{2}{3}-\frac{1}{3}\right)+\left(\frac{3}{3^2}-\frac{2}{3^2}\right)+...+\left(\frac{100}{3^{99}}-\frac{99}{3^{99}}\right)-\frac{100}{3^{100}}\)

\(2M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)

\(\Rightarrow M=1+\frac{1}{2}=\frac{3}{2}\)

\(\Rightarrow\frac{3}{2}< \frac{3}{4}\left(đpcm\right)\)

11 tháng 3 2022

Đây Là Lớp Mấy

11 tháng 4 2024

  VZFVFVNCXN XHF 

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

17 tháng 4 2023

C gbcgghfdhsgxwvdgdrgdtdgst

27 tháng 9 2021

Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12

Mà đoạn 2A sai nhé bạn, sửa lại:

2A = 3101−13101−1 2A=-10001

A=-10001/2

A=-5000,5

Vậy A=-5000,5

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2