K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

không biết

8 tháng 5 2018

cảm ơn công minh T_T

17 tháng 9 2015

Áp dụng BĐT Bu nhi a cốp x ki 

\(\left(1.\sqrt{x}+2.\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]=5\left(x+y\right)\)

=> \(\left(\sqrt{x}+2\sqrt{y}\right)^2\le5\left(x+y\right)\)

=> \(10^2\le5\left(x+y\right)\)

Tiếp nha 

30 tháng 6 2018

Áp dụng BĐT bunhiacopxki ta có:

\(A^2=\left(\sqrt{x}+2\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left(x+y\right)=5\left(x+y\right)\)(1)

thay \(\sqrt{x}+2\sqrt{y}=10\)vào 1 ta đc \(10^2\le5\left(x+y\right)< =>x+y\ge20\)

18 tháng 6 2021

ta có: \(\sqrt{x}+2\sqrt{y}=10=>\left(\sqrt{x}+2\sqrt{y}\right)^2=100\)

áp dụng BDT Bunhia 

\(\sqrt{x}+2\sqrt{y}\le\sqrt{\left(1+2^2\right)\left(x+y\right)}\)

\(=>100\le5\left(x+y\right)=>x+y\ge\dfrac{100}{5}=20\)

8 tháng 7 2016

Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(10^2=\left(1.\sqrt{x}+2.\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left(x+y\right)=5\left(x+y\right)\)

\(\Rightarrow\left(x+y\right)\ge\frac{100}{5}=20\Rightarrow x+y\ge20\)

8 tháng 7 2016

Đề có chút ko đúng bạn xem lại

8 tháng 7 2016

thiếu đề

15 tháng 3 2018

chuyển vế nhân liên hợp để tạo nhân tử chung là x-y

13 tháng 7 2018

ĐKXĐ: x,y >1

\(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\\ \)

\(\Leftrightarrow\sqrt{x^2+5}-\sqrt{y^2+5}+\left(\sqrt{x-1}-\sqrt{y-1}\right)+x^2-y^2=0\)

\(\Leftrightarrow\frac{\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right).\left(\sqrt{x^2+5}+\sqrt{y^2+5}\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(\sqrt{x-1}-\sqrt{y-1}\right).\left(\sqrt{x-1}+\sqrt{y-1}\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)

\(\Leftrightarrow\frac{\left(x^2+5\right)-\left(y^2+5\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(x-1\right)-\left(y-1\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)

\(\Leftrightarrow\frac{x^2-y^2}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)

\(\Leftrightarrow\left(x-y\right).\left(\frac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right)=0\)

\(\Rightarrow x-y=0\Leftrightarrow x=y\)

13 tháng 7 2018

Giả sử x=y

Khi đó:

\(\sqrt{x^2+5}+\sqrt{x-1}+x^2\)

\(=\sqrt{y^2+5}+\sqrt{x-1}+y^2\)

Luôn đúng 

Vậy ta suy ra đpcm