Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\left(a;b;c>0\right)\) và \(p=a+b+c;q=ab+bc+ca;r=abc\)
Thì \(a^2+b^2+c^2+2=a^2b^2c^2\Leftrightarrow p^2-4q+2=r^2-2q\)
Cần chứng minh: \(a^2+b^2+c^2+6\ge2\left(ab+bc+ca\right)\Leftrightarrow p^2-2q+6\ge2q\)
Nếu \(q\le6\): Có \(p^2\ge3q\) nên ta chứng minh \(q+6\ge2q\Leftrightarrow q\le6\) (đúng)
Nếu \(q>6\) mình chưa nghĩ ra.
@Akai Haruma cô có cách nào khác hoặc cách nào cho trường hợp q > 6 không cô?
\(x+y+z+2=xyz\)
\(\Leftrightarrow2x+2y+2z+xy+yz+zx+3=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\Leftrightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\)
\(\Leftrightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=2\)
\(\Rightarrow2=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z+3}\)
\(\Leftrightarrow2x+2y+2z+6\ge\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)
\(\Leftrightarrow2x+2y+2z+6\ge x+y+z+2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}\)
\(\Leftrightarrow x+y+z+6\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
Dấu "=" xảy ra khi \(x=y=z=2\)
Sửa lại đề: cho x, y, z dương thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=1\)
Chứng minh \(A=\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\le\dfrac{3}{2}\)
Giải:
Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow ab+bc+ac=1\)
\(\Rightarrow A=\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{bc}\left(1+\dfrac{1}{a^2}\right)}}+\dfrac{\dfrac{1}{b}}{\sqrt{\dfrac{1}{ac}\left(1+\dfrac{1}{b^2}\right)}}+\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{ab}\left(1+\dfrac{1}{c^2}\right)}}\)
\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+1}}+\sqrt{\dfrac{ac}{b^2+1}}+\sqrt{\dfrac{ab}{c^2+1}}\)
\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+ab+bc+ac}}+\sqrt{\dfrac{ac}{b^2+ab+bc+ac}}+\sqrt{\dfrac{ab}{c^2+ab+bc+ac}}\)
\(\Rightarrow A=\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ac}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)
\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)
\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\right)=\dfrac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\) hay \(x=y=z=\sqrt{3}\)
Đề bài này có rất nhiều vấn đề, đầu tiên không có điều kiện x, y, z gì cả? Dương? Â? Bằng 0? Khác 0?
Sau nữa là chiều của BĐT cũng có vấn đề nốt, mình thử với \(x=y=2;z=\dfrac{4}{3}\) thì vế trái ra \(\dfrac{2+\sqrt{30}}{5}\) mà theo casio cho biết thì số này nhỏ hơn \(\dfrac{3}{2}\) , vậy BĐT cũng sai luôn
\(x^2+1\ge2x\) ; \(y^2+1\ge2y\); \(z^2+1\ge2z\)
\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
Cộng vế với vế các BĐT trên:
\(3x^2+3y^2+3z^3+3\ge2\left(x+y+z+xy+yz+zx\right)=12\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{12-3}{3}=3\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Theo bài ra ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\Rightarrow x+y+z=xyz\)
Do:\(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)
Tương tự: \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\);
\(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(z+y\right)\left(x+y\right)}\)
\(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\)
\(A=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)
Áp dụng bất đẳng thức Cô si \(\frac{a+b}{2}\ge\sqrt{ab}\), dấu "=" xảy ra khi \(a=b\)
Ta có \(\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\);
\(\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\);
\(\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\le\frac{1}{2}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)
\(A\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+z}+\frac{y}{y+x}+\frac{z}{y+z}+\frac{z}{x+z}\right)=\frac{3}{2}\)
Vậy \(A\le\frac{3}{2}\). Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)
M giải thích cho t chỗ sao mà \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\) đc vậy?
Với cả từ dòng này xuống dòng này nữa.
Sao mà tin đc dấu " = " xảy ra khi nào vậy?
Lời giải:
$xy+yz+xz=3xyz$
$\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3$
Đặt $\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right)=(a,b,c)$ thì bài toán trở thành:
Cho $a,b,c>0$ thỏa mãn $a+b+c=3$. CMR $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq a^2+b^2+c^2$
---------------------------------
Thật vậy:
Áp dụng BĐT AM-GM ta có:
$\frac{1}{a^2}+\frac{1}{b^2}\geq \frac{2}{ab}$
$\frac{1}{b^2}+\frac{1}{c^2}\geq \frac{2}{bc}$
$\frac{1}{c^2}+\frac{1}{a^2}\geq \frac{2}{ac}$
Cộng theo vế và thu gọn: $\sum \frac{1}{a^2}\geq \sum \frac{1}{ab}=\frac{a+b+c}{abc}=\frac{3}{abc}$
Ta cần chứng minh $\frac{3}{abc}\geq a^2+b^2+c^2$ thì bài toán sẽ được chứng minh.
$\Leftrightarrow abc(a^2+b^2+c^2)\leq 3(*)$
Theo hệ quả BĐT AM-GM: $3abc=abc(a+b+c)\leq \frac{(ab+bc+ac)^2}{3}$
$\Rightarrow abc\leq \frac{(ab+bc+ac)^2}{9}$
$\Rightarrow abc(a^2+b^2+c^2)\leq \frac{(a^2+b^2+c^2)(ab+bc+ac)^2}{9}$
Mà:
$(a^2+b^2+c^2)(ab+bc+ac)^2\leq \left(\frac{a^2+b^2+c^2+ab+bc+ac+ab+bc+ac}{3}\right)^3=\frac{(a+b+c)^6}{27}=27$ theo AM-GM
Do đó: $abc(a^2+b^2+c^2)\leq \frac{27}{9}=3$. BĐT $(*)$ được CM
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$ hay $x=y=z=1$
\(A=\frac{\sqrt{xy}}{z+2\sqrt{xy}}+\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}\)
\(2A=\frac{z+2\sqrt{xy}}{z+2\sqrt{xy}}-\frac{z}{z+2\sqrt{xy}}+\frac{x+2\sqrt{yz}}{x+2\sqrt{yz}}-\frac{x}{x+2\sqrt{yz}}+\frac{y+2\sqrt{zx}}{y+2\sqrt{zx}}-\frac{y}{y+2\sqrt{zx}}\)
\(=3-\left(\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{zx}}+\frac{z}{z+2\sqrt{xy}}\right)\le3-\left(\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\right)\)
\(=3-\frac{x+y+z}{x+y+z}=3-1=2\)\(\Leftrightarrow\)\(A\le\frac{2}{2}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)
...