K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

1. |x|=2011

<=>\(\orbr{\begin{cases}x=2011\\x=-2011\end{cases}}\)

2.1 + x = -2011

  x= -2011-1

  x= -2012

3. 1 - (-x+2010)=2011

   -x+2010=1 - 2011

  -x+ 2010= -2010

   -x = -2010-2010

   -x = -4020

=> x = -4020

4.  x2 = 25

   x= 25 :2

    x=12,5

6 tháng 5 2018

1) x = 2011 hoặc x = (- 2011)

2) x =  (- 2011) -1

   x = - 2012

3) x + 2010 = - 2010

   x = (- 2010) - 2010

  x = - 4020

4) x .2 = 25

   x = 25 : 2

  x =12,5

Chúc bạn học tốt.

0
·         Câu 7:Phân tích x3(x2 – 1) - (x2 – 1) thành nhân tử ta được:o    A. (x + 1)3(x + 1)o    B. (x – 1)(x + 1)(x2 + x + 1)o    C. (x – 1)2(x + 1)(x2 – x + 1)o    D. (x – 1)2(x + 1)(x2 + x + 1)·         Câu 8:(x + 3)2 – 25 được phân tích thành nhân tử là:o    A. (x – 8)(x – 2)o    B. (x – 8)(x + 2)o    C. (x + 8)(x + 2)o    D. (x + 8)(x – 2)·         Câu 9:Giá trị của biểu thức A = x2 – y2 + 2y – 1 với x = 75; y = 26 là:o    A. – 5000o    B. 5000o    C. 6500o    D. –...
Đọc tiếp

·         Câu 7:Phân tích x3(x2 – 1) - (x2 – 1) thành nhân tử ta được:

o    A. (x + 1)3(x + 1)

o    B. (x – 1)(x + 1)(x2 + x + 1)

o    C. (x – 1)2(x + 1)(x2 – x + 1)

o    D. (x – 1)2(x + 1)(x2 + x + 1)

·         Câu 8:(x + 3)2 – 25 được phân tích thành nhân tử là:

o    A. (x – 8)(x – 2)

o    B. (x – 8)(x + 2)

o    C. (x + 8)(x + 2)

o    D. (x + 8)(x – 2)

·         Câu 9:

Giá trị của biểu thức A = x2 – y2 + 2y – 1 với x = 75; y = 26 là:

o    A. – 5000

o    B. 5000

o    C. 6500

o    D. – 6500

·         Câu 10:

Tìm x biết 2x2 – x – 1 = 0 ta được:

o    A. x = - 1 hoặc x = -1/2

o    B. x = 1 hoặc x = -1/2

o    C. x = - 1 hoặc x = 1/2

·         Câu 11:

Giá trị của biểu thức 4(x + y)2 – 9(x – y)2 với x = 2; y = 4 là:

o    A. 118

o    B. 108

o    C. 78

o    D. 98

·         Câu 12:

Đa thức 49(y – 4)2– 9(y + 2)2 được phân tích thành nhân tử là:

o    A. 2(5y + 11)(4y – 24)

o    B. 2(5y – 11)(4y + 24)

o    C. 2(5y – 11)(4y – 34)

o    D. 2(5y + 11)(4y + 34)

·         Câu 13:

Đa thức 9x+ 24x3y2 + 16y2 được phân tích thành nhân tử là:

o    A. (3x3 – 4y2)2

o    B. (3x3 + 4y2)2

o    C. (3y3 – 2x2)2

o    D. - (3x3 + 4y2)2

·         Câu 14:

Đa thức 36 – 12x + x2 được phân tích thành nhân tử là:

o    A. (6 – x)2

o    B. (6 + x)2

o    C. (6 + x)3

o    D. (6 – x)3

 

1
19 tháng 10 2021

\(7,D\\ 8,D\\ 9,B\\ 10,B\\ 11,B\\ 12,C\\ 13,B\\ 14,A\)

1) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

Ta có: \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)

\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)

Suy ra: \(x^2+2x+1-\left(x^2-2x+1\right)=4\)

\(\Leftrightarrow x^2+2x+1-x^2+2x-1=4\)

\(\Leftrightarrow4x=4\)

hay x=1(loại)

Vậy: \(S=\varnothing\)

2) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x+2}{x-2}+\dfrac{x}{x+2}=2\)

\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+4x+4+x^2-2x=2x^2-8\)

\(\Leftrightarrow2x^2+2x+4-2x^2-8=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow2x=4\)

hay x=2(loại)

Vậy: \(S=\varnothing\)

3 tháng 6 2019

a) Kết quả 2x(2x – 3).             b) Kết quả xy( x 2  – 2xy + 5).

c) Kết quả 2x(x + 1)(x + 4).    d) Kết quả 2 5 ( y − 1 ) ( x + y ) .

c: \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=-\sqrt{7}\\x=-5\\x=5\end{matrix}\right.\)

3 tháng 12 2021

mik lớp 6 bạn

15 tháng 10 2021

a) \(\Rightarrow9x^2+24x+16-9x^2+1=49\)

\(\Rightarrow24x=32\Rightarrow x=\dfrac{4}{3}\)

b) \(\Rightarrow x^2-13x+22=0\)

\(\Rightarrow\left(x-11\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=11\\x=2\end{matrix}\right.\)

c) \(\Rightarrow x^2-3x-10=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

16 tháng 5 2019

1 tháng 7 2021

a)4x2+4x+1-x2-10x-25=0

`<=>(2x+1)^2-(x+5)^2=0`

`<=>(2x+1-x-5)(2x+1+x+5)=0`

`<=>(x-4)(3x+6)=0`

`<=>(x-4)(x+2)=0`

`<=>` \(\left[ \begin{array}{l}x=2\\x=-2\end{array} \right.\) 
b)(x^2+x+7)(x^2+x-7)=(x2+x)2-7x

`<=>(x^2+x)^2-7^2=(x^2+x)^2-7x`

`<=>-7^2=-7x`

`<=>-49=-7x`

`<=>x=7`

Vậy x=7