baì 1:tính giá trị nhỏ nhất của biểu thức sau
\(\left(x-7\right)^2+1\)
\(\left(5x-3\right)^{2018}-2017\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(x-7\right)^2+1\) là A
A = \(\left(x-7\right)^2+1\)
Ta có: \(\left(x-7\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-7\right)^2+1\ge1\) với mọi x
=> GTNN của A là 1 khi \(\left(x-7\right)^2=0\)
\(\Rightarrow x-7=0\rightarrow x=7\)
Vậy GTNN của A là 1 khi x = 7
\(\left(5x-3\right)^{2018}-2017\)
Đặt \(\left(5x-3\right)^{2018}-2017\) là B
Ta có: \(\left(5x-3\right)^{2018}\ge0\) với mọi x
\(\Rightarrow\left(5x-3\right)^{2018}-2017\ge-2017\) với mọi x
=> GTNN của B là -2017 khi\(\left(5x-3\right)^{2018}=0\)
\(\Rightarrow5x-3=0\Rightarrow5x=3\Rightarrow x=\dfrac{3}{5}\)
Vậy GTNN của B là -2017 khi \(x=\dfrac{3}{5}\)
\(C=\dfrac{\left|X-2017\right|+2018}{\left|X-2017\right|+2019}=\dfrac{\left(\left|X-2017\right|+2019\right)-1}{\left|X-2017\right|+2019}=1-\dfrac{1}{\left|X-2017\right|+2019}\)
\(\text{Biểu thức C đạt giá trị nhỏ nhất khi }\left|x-2017\right|+2019\text{ có giá trị nhỏ nhất}\)
\(\text{Mà }\left|x-2017\right|\ge0\text{ nên }\left|x-2017\right|+2019\ge2019\)
\(\text{Dấu "=" xảy ra khi }x=2017\Rightarrow C=\dfrac{2018}{2019}\)
\(\text{Vậy giá trị nhỏ nhất của C là }\dfrac{2018}{2019}\text{ khi }x=2017\)
a, \(A=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)
Vậy \(Min=1\Leftrightarrow2017\le x\le2018\)
b, \(B=\dfrac{x^2+4+8}{x^2+4}=1+\dfrac{8}{x^2+4}\)
Thấy : \(x^2+4\ge4\)
\(\Rightarrow B=1+\dfrac{8}{x^2+4}\le3\)
Vậy \(Max=3\Leftrightarrow x=0\)
C = ..................................................................... ( giống cái đề bài )
= ( x + 2017 ) + ( x + 2018 ) + ( x + 2019 )
= ( x + x + x ) + ( 2017 + 2018 + 2019 )
= 3x + 6054
Vì ( x + 2017 ) là căn bậc 2 của ( x+2017 )^2 => x+2017 > hoặc = 0
( x + 2018 ) ........................... ( x+2018)^2 => x+2018 > hoặc = 0
( x + 2019) ............................( x+2019 )^2 => x+2019 > hoặc = 0
SUY RA ( x+2017 ) + ( x+2018 ) + ( x+2019 ) > hoặc = 0 => 3x + 6054 > hoặc = 0
dấu đẳng thức xảy ra <=> 3x + 6054 = 0 <=> 3x = - 6054 <=> x = - 2018
Vậy C có GTNN là 0 khi x = - 2018
1, \(A=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
\(A=5x^3-15x+7x^2-5x^3-7x^2\)
\(A=\left(5x^3-5x^3\right)+\left(7x^2-7x^2\right)-15x\)
\(A=-15x\)
Thay \(x=-5\) vào A ta được:
\(-15\cdot-5=75\)
Vậy: ....
2. \(B=x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
\(B=x^3-3x+7x^2-5x^3-7x^2\)
\(B=\left(x^3-5x^3\right)+\left(7x^2-7x^2\right)-3x\)
\(B=-4x^3-3x\)
Thay \(x=10,y=-1\) vào B ta được:
\(-4\cdot10^3-3\cdot10=-4\cdot1000-3\cdot10=-4000-30=-4030\)
Vậy: ....
Có: \(\left(x-7\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-7\right)^2+1\ge1\)
\(\Rightarrow min\left(x-7\right)^2+1=1khi\left(x-7\right)^2=0\)
\(\Rightarrow\left(x-7\right)^2=0^2\)
\(\Rightarrow x-7=0\)
\(\Rightarrow x=7\)
Vậy GTNN của (x-7)2+1 là 1 tại x=7
Có:\(\left(5x-3\right)^{2018}=\left[\left(5x-3\right)^2\right]^{1009}\)
\(Co:\left(5x-3\right)^2\ge0\)
\(\Rightarrow\left[\left(5x-3\right)^2\right]^{1009}\ge0\)
\(\Rightarrow\left(5x-3\right)^{2018}\ge0\)
\(\Rightarrow\left(5x-3\right)^{2018}-2017\ge-2017\)
\(\Rightarrow min\left(5x-3\right)^{2018}-2017=-2017khi\left(5x-3\right)^2=0\)
\(\Rightarrow5x-3=0\)
\(\Rightarrow x=\frac{3}{5}\)
Vậy GTNN của (5x-3)2018 -2017 là -2017 khi \(x=\frac{3}{5}\)