Cho số hữu tỉ y= 2a-1/-3. Với giá trị nào thì:
a) y là số dương.
b) y là số âm
c) y không là số dương cũng không là số âm
Bạn nào giải giúp mình vs, mik đang cần gấp. Cảm ơn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Để y là số hữu tỉ dương thì 2a-1<0⇔2a<1\(\Leftrightarrow a< \dfrac{1}{2}\)
b)Để y là số hữu tỉ âm thì 2a-1>0⇔2a>1\(\Leftrightarrow a>\dfrac{1}{2}\)
c)Để y không phải là số hữu tỉ dương cũng không phải số hữu tỉ âm thì y=0 hay 2a-1=0⇔2a=1\(\Leftrightarrow a=\dfrac{1}{2}\)
a. Để x là số hữu tỷ dương thì:
2a+ \(\dfrac{7}{5}\) > 0
⇔ a > \(\dfrac{-7}{10}\)
Để y là số hữu tỷ dương thì:
3b- \(\dfrac{8}{-5}\) > 0
⇔ 3b+ \(\dfrac{8}{5}\) > 0
⇔ b > \(\dfrac{-8}{15}\)
Vậy .....
b. Để x là số hữu tỷ âm thì :
2a+ \(\dfrac{7}{5}\) < 0
⇔ a < \(\dfrac{-7}{10}\)
Để y là số hữu tỷ âm thì :
3b+ \(\dfrac{8}{5}\) < 0
⇔ b < \(\dfrac{-8}{15}\)
Vậy...
c. x,y không âm, không dương( Tức là x, y = 0) thì a= \(\dfrac{-7}{10}\), b= \(\dfrac{-8}{15}\) nhé !!
Chúc cậu học tốt !
a) Để x và y là số dương thì \(\left\{{}\begin{matrix}a>-\dfrac{7}{2}\\b>\dfrac{8}{3}\end{matrix}\right.\)
c) Để x và y không là số âm cũng ko là số dương thì \(\left\{{}\begin{matrix}a=-\dfrac{7}{2}\\b=\dfrac{8}{3}\end{matrix}\right.\)
a: Để y là số nguyên thì 2a-4 chia hết cho 3
=>2a-4=3k(k thuộc Z)
=>\(a=\dfrac{3k+4}{2}\left(k\in Z\right)\)
b: Để y ko âm cũng không dương thì 2a-4=0
=>a=2
a: x>0
=>2a+5<0
=>a<-5/2
b: x<0
=>2a+5>0
=>a>-5/2
c: x=0
=>2a+5=0
=>a=-5/2
a: Để x là số dương thì 2a-5<0
hay \(a< \dfrac{5}{2}\)
b: Để x là số âm thì 2a-5>0
hay \(a>\dfrac{5}{2}\)
c: Để x=0 thì 2a-5=0
hay \(a=\dfrac{5}{2}\)
a, Để y dương khi\(2a-1< 0\Leftrightarrow a< \frac{1}{2}\)
b, Để y âm khi \(2a-1>0\Leftrightarrow a>\frac{1}{2}\)
c, Để y ko dương cũng ko âm khi \(2a-1=0\Leftrightarrow a=\frac{1}{2}\)