K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

3/1^2.2^2+5/2^2.3^2+7/3^2.4^2+...+4019/2009^2.2010^2

=3/1.4+5/4.9+7/9.16+...+4019/4036081.4040100

= 1/1-1/4+1/4-1/9+1/9-1/16+...+1/4036081-1/4040100

= 1/1-1/4040100

= 1-1/4040100 < 1

Chúc bạn học tốt!

20 tháng 5 2016

câu hỏi là tính tổng à

20 tháng 5 2016

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{2010^2-2009^2}{2009^2.2010^2}\)

\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}=1-\frac{1}{2010^2}\)

20 tháng 5 2016

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{2010^2-2009^2}{2009^2.2010^2}\)

\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}=1-\frac{1}{2010^2}\)

22 tháng 1 2018

Ta có:

(n+1)2-n2=2n+1=n+(n+1)

=> A=\(\frac{2+1}{2^21^2}+\frac{2+3}{2^23^2}+... +\frac{2009+2010}{2009^22010^2}=1-\frac{1}{2^2}+\frac{1}{2^2} -\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2} <1 \)

3 tháng 5 2018

mấy bạn ơi câu b) là chứng minh C<\(\dfrac{1}{2}\)nha

15 tháng 12 2015

A=3 /1^2.2^2 +5 / 2^2.3^2 +7/3^2.4^2 +...+ 19 /9^2.10^2

=1/1^2-1/2^2+1/2^2-1/3^2+1/3^2-1/4^2+....+1/9^2-1/10^2

=1/1^2-1/10^2

=99/100

=0,99

vậy A< 1