K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2014

1a) gọi số cần lập là abcde
(a khác 0...)

chọn a thuộc tập số trên\{0} => có 4 cách chọn
chọn b có 5 c
chọn c có 5c
chọn d có 5c
 chọn e có 5c
ADQT nhân có 4x5x5x5x5 = ....
vậy có....
b)chọn a khác 0 có 4 c
chọn b khác a có 4c
chọn c khác a và b có 3 c
chọn d khác a, b, c, có 2c
=> ADQT nhân có 4x4x3x2 =...
vậy...
c) chọn a khác o có 4 c
chọn các c/số còn lại là 1 chỉnh hợp chập 2 của 4 phần tử(trừ a) => có 4A2 cách
ADQT nhân có 4x 4A2 =...
Vậy...
d) tương tự câu a
 

 

8 tháng 6 2016

Ô tô đi với vận tốc 50km/giờ vì :

         100 : 2 = 50

                   đs : 50

14 tháng 7 2016

다른 사람을 물어보세요! 알았지? 난 대답을 모르겠어요. 정말 미안 해요. 당신에게 좋은 날이 젠장!다른 사람을 물어보세요! 알았지? 난 대답을 모르겠어요. 정말 미안 해요. 당신에게 좋은 날이 젠장!

14 tháng 7 2016

Ta có 3 cách chọn chữ số hàng trăm.

2 cách chọn  chữ số hàng chục

1 cách chọn chữ số hàng đơn vị

Do đó ta tìm được :

3 x 2 x 1 = 6 ( số )

1 tháng 9 2019

Chọn B

Gọi số cần tìm có dạng là

Mỗi bộ ba số  là một chỉnh hợp chập 3 của 9 phần tử.

Vậy số các số cần tìm là  A 9 3  số.

24 tháng 9 2017

Chọn B

Lấy ra 3 chữ số từ 9 chữ số và sắp xếp 3 chữ số đó theo thứ tự, mỗi cách sắp xếp tạo nên 1 số có 3 chữ số khác nhau. Như vậy, có  A 9 3 số cần tìm.

* Nhận xét: Mục đích bài toán là phân biệt hai khái niệm: Chỉnh hợp và tổ hợp. Học sinh có thể giải bài này bằng phương pháp nhân: 9.8.7, và so sánh với 4 đáp án. Hai chỉnh hợp khác nhau thì có thể khác nhau về phần tử hoặc khác nhau về thứ tự các phần tử. Hai tổ hợp khác nhau thì khác nhau về phần tử.

*Lý thuyết Chỉnh hợp

- Cho tập hợp A có n phần tử và cho số nguyên k, (1 ≤ k  ≤ n). Khi lấy k phần tử của A và sắp xếp chúng theo một thứ tự, ta được một chỉnh hợp chập k của n phần tử của A (gọi tắt là một chỉnh hợp n chập k của A).

- Số các chỉnh hợp chập k của một tập hợp có n phần tử là: 

- Một số qui ước: 

*Lý thuyết Tổ hợp

- Cho tập hợp A có n phần tử và cho số nguyên k, (1 ≤  k  ≤  n). Mỗi tập hợp con của A có phần tử được gọi là một tổ hợp chập k của n phần tử của A.

- Số các chỉnh hợp chập k của một tập hợp có n phần tử là : 

Một số quy ước: với qui ước này ta có  đúng với số nguyên dương k, thỏa 0 k  n

PT 14.1. Chọn B

TH1 

TH2: vì 

Như vậy, có  số cần tìm

PT 14.2.

Chọn C

Mỗi tập con có 3 phần tử thuộc tập {1,2,...,9} xác định duy nhất một số có 3 chữ số tăng dần từ trái qua phải (đảm bảo chữ số đầu tiên khác 0).

Mỗi tập con có 3 phần tử thuộc tập {0,1,2....,9} xác định duy nhất một số có 3 chữ số giảm dần từ trái qua phải.

Như vậy, có  số cần tìm.

Bài 1:Cho A={0;1;2;3;4;5}.Hỏi có thể lập được bao nhiêu số có 4 chữ số khác nhau sao cho tổng hai chữ số đầu nhỏ hơn tổng hai chữ số sau 1 đơn vị Bài 2:Với các chữ số 1;2;3;4;5;6 có thể lập được bao nhiêu số tự nhiên thỏa mãn?a,gồm có 6 chữ số b,gồm có 6 chữ số khác nhau c,gồm có 6 chữ số và chia hết cho 2Bài 3:Cho X={0;1;2;3;4;5;6} a,Có bao nhiêu số chẵn có 4 chữ số khác nhau đôi một ?b,Có bao...
Đọc tiếp

Bài 1:Cho A={0;1;2;3;4;5}.Hỏi có thể lập được bao nhiêu số có 4 chữ số khác nhau sao cho tổng hai chữ số đầu nhỏ hơn tổng hai chữ số sau 1 đơn vị

 Bài 2:Với các chữ số 1;2;3;4;5;6 có thể lập được bao nhiêu số tự nhiên thỏa mãn?

a,gồm có 6 chữ số 

b,gồm có 6 chữ số khác nhau 

c,gồm có 6 chữ số và chia hết cho 2

Bài 3:Cho X={0;1;2;3;4;5;6} 

a,Có bao nhiêu số chẵn có 4 chữ số khác nhau đôi một ?

b,Có bao nhiêu chữ số có 3 chữ số khác nhau chia hết cho 5\

c, Có bao nhiêu số có 3 chữ số khác nhau chia hết cho 9 .

Bài 4:Có bao nhiêu số tự nhiên có tính chất.

a,là số chẵn có 2 chữ số không nhết thiết phải khác nhau

b,là số lẻ và có 2 chữ số không nhất thiết phải khác nhau

c,là số lẻ và có hai chữ số khác nhau 

d,là số chẵn và có 2 chữ số khác nhau 

Bài 5:Cho tập hợp A{1;2;3;4;5;6} 

a,có thể lập được bao nhiêu số gồm 4 chữ số khác nhau hình thành từ tập A 

b,có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 2 

c,có thể lập được bao nhiêu số gồm 5 chữ số khác nhau và chia hết cho 5

giúp với tớ cần lắm 

 

1
25 tháng 8 2017

Bài 1:Cho A={0;1;2;3;4;5}.Hỏi có thể lập được bao nhiêu số có 4 chữ số khác nhau sao cho tổng hai chữ số đầu nhỏ hơn tổng hai chữ số sau 1 đơn vị

 Bài 2:Với các chữ số 1;2;3;4;5;6 có thể lập được bao nhiêu số tự nhiên thỏa mãn?

a,gồm có 6 chữ số 

b,gồm có 6 chữ số khác nhau 

c,gồm có 6 chữ số và chia hết cho 2

Bài 3:Cho X={0;1;2;3;4;5;6} 

a,Có bao nhiêu số chẵn có 4 chữ số khác nhau đôi một ?

b,Có bao nhiêu chữ số có 3 chữ số khác nhau chia hết cho 5\

c, Có bao nhiêu số có 3 chữ số khác nhau chia hết cho 9 .

Bài 4:Có bao nhiêu số tự nhiên có tính chất.

a,là số chẵn có 2 chữ số không nhết thiết phải khác nhau

b,là số lẻ và có 2 chữ số không nhất thiết phải khác nhau

c,là số lẻ và có hai chữ số khác nhau 

d,là số chẵn và có 2 chữ số khác nhau 

Bài 5:Cho tập hợp A{1;2;3;4;5;6} 

a,có thể lập được bao nhiêu số gồm 4 chữ số khác nhau hình thành từ tập A 

b,có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 2 

c,có thể lập được bao nhiêu số gồm 5 chữ số khác nhau và chia hết cho 5

dài quá

botay.com.vn

11 tháng 11 2017

Đáp án B

Số các số có chín chữ số khác nhau là 9!. Trong 9! số này, số các số mà chữ số 1 đứng trước chữ số 2 hoặc chữ số 1 đứng sau chữ số 2 là bằng nhau. Do đó, số các số mà chữ số 1 đứng trước chữ số 2 là 9 ! 2  

Tương tự, số các số mà chữ số 1 đứng trước chữ số 2 và chữ số 3 đứng trước chữ số 4 là 9 ! 4  

Số các số cần tìm là 9 ! 8 = 45360

16 tháng 8 2017

Đáp án B

Số các số có chín chữ số khác nhau là 9!. Trong 9! số này, số các số mà chữ số 1 đứng trước chữ số 2 hoặc chữ số 1 đứng sau chữ số 2 là bằng nhau. Do đó, số các số mà chữ số 1 đứng trước chữ số 2 là 9 ! 2 .  

Tương tự, số các số mà chữ số 1 đứng trước chữ số 2 và chữ số 3 đứng trước chữ số 4 là 9 ! 4 .  

Số các số cần tìm là  9 ! 8 = 45360.

20 tháng 10 2023

a: Gọi số cần tìm là \(\overline{abcde}\)

a có 4 cách chọn 

b có 4 cách chọn

c có 3 cách chọn

d có 2 cách chọn

e có 1 cách chọn

=>Có \(4\cdot4\cdot3\cdot2\cdot1=16\cdot6=96\left(số\right)\)

b: Gọi số cần tìm là \(\overline{abcd}\)

a có 4 cách chọn

b có 4 cách chọn

c có 3 cách chọn

d có 2 cách chọn

Do đó: Có \(4\cdot4\cdot3\cdot2=96\left(số\right)\)

c: Gọi số cần tìm có dạng là  \(\overline{abc}\)

a có 4 cách chọn

b có 4 cách chọn

c có 3 cách chọn

=>Có 4*4*3=48 số

d: Gọi số cần tìm có dạng là \(\overline{abc}\)

a có 4 cách

b có 5 cách

c có 5 cách

Do đó: Có \(4\cdot5\cdot5=100\left(số\right)\)

20 tháng 10 2023

a) Để lập được số tự nhiên có 5 chữ số gồm cả 5 chữ số 0, 1, 2, 3, 4, ta có 5 cách chọn chữ số đầu tiên (0, 1, 2, 3, 4), 5 cách chọn chữ số thứ hai, 5 cách chọn chữ số thứ ba, 5 cách chọn chữ số thứ tư và 5 cách chọn chữ số thứ năm. Vậy tổng số số tự nhiên có 5 chữ số gồm cả 5 chữ số 0, 1, 2, 3, 4 là 5 x 5 x 5 x 5 x 5 = 3125.

b) Để lập được số tự nhiên có 4 chữ số khác nhau từ các chữ số 0, 1, 2, 3, 4, ta có 5 cách chọn chữ số đầu tiên, 4 cách chọn chữ số thứ hai (loại bỏ chữ số đã chọn ở bước trước), 3 cách chọn chữ số thứ ba (loại bỏ 2 chữ số đã chọn ở bước trước), và 2 cách chọn chữ số thứ tư (loại bỏ 3 chữ số đã chọn ở bước trước). Vậy tổng số số tự nhiên có 4 chữ số khác nhau là 5 x 4 x 3 x 2 = 120.

c) Để lập được số tự nhiên có 3 chữ số khác nhau từ các chữ số 0, 1, 2, 3, 4, ta có 5 cách chọn chữ số đầu tiên, 4 cách chọn chữ số thứ hai (loại bỏ chữ số đã chọn ở bước trước), và 3 cách chọn chữ số thứ ba (loại bỏ 2 chữ số đã chọn ở bước trước). Vậy tổng số số tự nhiên có 3 chữ số khác nhau là 5 x 4 x 3 = 60.

d) Để lập được số tự nhiên có 3 chữ số từ các chữ số 0, 1, 2, 3, 4 (có thể có chữ số giống nhau), ta có 5 cách chọn chữ số đầu tiên, 5 cách chọn chữ số thứ hai, và 5 cách chọn chữ số thứ ba. Vậy tổng số số tự nhiên có 3 chữ số (có thể có chữ số giống nhau) là 5 x 5 x 5 = 125.... 

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)     Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)

b)    Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).

Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:

       8. 3! = 48 (số)