K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{2008.2011}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2008}-\frac{1}{2011}\)

\(=1-\frac{1}{2011}\)

\(=\frac{2011}{2011}-\frac{1}{2011}\)

\(=\frac{2010}{2011}\)

Chúc bạn học tốt !!!! 

1 tháng 5 2018

Đặt: A= \(\frac{3}{1\times4}\)\(\frac{3}{4\times7}\)\(\frac{3}{7\times10}\)+...+ \(\frac{3}{2005\times2008}\)\(\frac{3}{2008\times2011}\).

A= \(\frac{3}{1}\)\(\frac{3}{4}\)\(\frac{3}{4}\)\(\frac{3}{7}\)\(\frac{3}{7}\)\(\frac{3}{10}\)+...+ \(\frac{3}{2005}\)\(\frac{3}{2008}\)\(\frac{3}{2008}\)\(\frac{3}{2011}\).

A= 3- \(\frac{3}{2011}\).

A= \(\frac{6033}{2011}\)\(\frac{3}{2011}\).

A= \(\frac{6030}{2011}\).

Vậy A= \(\frac{6030}{2011}\).

28 tháng 3 2017

a,1/1-1/4+1/4-1/7+...+1/2008-1/2011

=(1-1/2011)+(-1/4+1/4)+...+(-1/2008+1/2008)

=1-1/2011+0+...+0

=1-1/2011

=2010/2011

28 tháng 1 2022

\(B=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{2008}-\dfrac{1}{2011}\right)\)

\(=\dfrac{1}{3}.\dfrac{2010}{2011}=\dfrac{2010}{6033}\)

Lại có : \(1=\dfrac{6033}{6033}\Rightarrow B< 1\)

\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{2008.2011}\)

\(=\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{2008}-\dfrac{1}{2011}\right)\)

\(=\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{2011}\right)\)

\(=\dfrac{1}{3}.\dfrac{2010}{2011}\)

\(=\dfrac{2010}{6033}=\dfrac{670}{2011}\)

Vì phân số \(\dfrac{670}{2011}\) có tử số nhỏ hơn mẫu số ⇒ \(\dfrac{670}{2011}< 1\) hay \(B< 1\)

2 tháng 10 2023

`#3107.101107`

1.

a)

`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`

`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`

`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`

`= 1/3* (1 - 1/103)`

`= 1/3*102/103`

`= 34/103`

b)

`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`

`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`

`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`

`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`

`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`

`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`

`= -1/2 * (1 - 1/101)`

`= -1/2*100/101`

`= -50/101`

2.

`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`

`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`

`= 1-1/100`

`= 99/100`

Sửa đề : \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)

\(=1-\frac{1}{43}=\frac{42}{43}\)

5 tháng 8 2015

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}+\frac{3}{97.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)

6 tháng 3 2018

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}+\frac{3}{97.100}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

11 tháng 2 2018

Ta có :

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}\)

\(=\)\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)

\(=\)\(1-\frac{1}{43}\)

\(=\)\(\frac{42}{43}\)

20 tháng 9 2016

\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)

\(\Rightarrow A=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(\Rightarrow A=3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(\Rightarrow A=3\left(1-\frac{1}{100}\right)\)

\(\Rightarrow A=3.\frac{99}{100}\)

\(\Rightarrow A=3.\frac{99}{100}\)

\(\Rightarrow A=\frac{297}{100}\)