Cho đa thức P(x)=3x^2-2x.Hẫy tìm nghiệm của đa thức P(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(P\left(1\right)=2-3-4=-5\)
b, \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2-9\)
c, Ta có \(H\left(x\right)=\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=3;x=-3\)
Xét f(x)=x2-3x-4=0
=>x2-4x+x-4=0
=>x(x-4)+(x-4)=0
=>(x+1)(x-4)=0=>x=4 hoặc x=-1
ta có: H(x)=0 <=> \(3x^4-3x^2\)=0
=> \(3x^2x^2-3x^2\)=0
=> \(3x^2\left(x^2-1\right)=0\)
=> \(\orbr{\begin{cases}3x^2=0\Rightarrow x=0\\x^2-1=0\Rightarrow x=1\end{cases}}\)
vậy x=0, x=1 là nghiệm của đa thức H(x)
Ta có: Cho H(x) = 0
=> 3x4 - 3x2 = 0
=> 3x2.(x2 - 1) = 0
=> \(\orbr{\begin{cases}3x^2=0\\x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=0\\x^2=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậyx thuộc {0; 1; -1} là nghiệm của đa thức H(x)
1000 tăng 21 tức là tỉ lệ tăng là: 21:1000=2,1%
1 năm sau tăng: 4000x2,1%= 82 người
Số dân sau 1 năm: 4000+82=4082 người
b/ Tương tự tỉ lệ tăng: 15:1000=1,5%
Số dân sau 1 năm: 4000x1,5%+4000=4060 người
`a,`
`P(x)=5x^3-3x+7-x`
`= 5x^3+(-3x-x)+7`
`= 5x^3-4x+7`
Bậc của đa thức: `3`
`Q(x)=-5x^3+2x-3+2x-x^2-2`
`= -5x^3+(2x+2x)-x^2+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc của đa thức: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=Q(x)+P(x)`
`M(x)=( 5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`= 5x^3-4x+7-5x^3-x^2+4x-5`
`= (5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`= -x^2+2`
Vậy, `M(x)=-x^2+2`
`c,`
`-x^2+2=0`
`=> -x^2=0-2`
`=> -x^2=-2`
`=> x^2=2`
`=> x= \sqrt {+-2}`
Vậy, nghiệm của đa thức là `x={ \sqrt{2}; -\sqrt {2} }.`
a: P(x)=5x^3-4x+7
Q(x)=-5x^3-x^2+4x-5
b: M(x)=P(x)-Q(x)
=5x^3-4x+7+5x^3+x^2-4x+5
=10x^3+x^2-8x+12
\(P\left(x\right)-Q\left(x\right)=3x^2+x-\left(-3x^2\right)+2x-2\)
=\(-3x^2+x+3x^2-2x+2\)
=\(\left(-3x^2+3x^2\right)+\left(x-2x\right)+2\)
=-x+2
Đặt -x+2=0
=>-x=-2
=>x=2
Vậy 2 là nghiệm của đa thức P(x)-Q(x)
\(f_{\left(x\right)}=3x+3=0\)
\(\Rightarrow\)\(3x=-3\)
\(\Rightarrow\)\(x=-1\)
vậy...
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
`a,`
`P(x)=5x^3 - 3x + 7 - x`
`= 5x^3 +(-3x-x)+7`
`= 5x^3-4x+7`
Bậc: `3`
`Q(x)=-5x^3 + 2x - 3 + 2x - x^2 - 2`
`= -5x^3-x^2+(2x+2x)+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=P(x)+Q(x)`
`M(x)=(5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`M(x)=5x^3-4x+7-5x^3-x^2+4x-5`
`M(x)=(5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`M(x)=-x^2+2`
`c,`
`M(x)=-x^2+2=0`
`\leftrightarrow -x^2=0-2`
`\leftrightarrow -x^2=-2`
`\leftrightarrow x^2=2`
`\leftrightarrow `\(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy, nghiệm của đa thức là \(x=\left\{\sqrt{2};-\sqrt{2}\right\}\)
Cho P(x)=3x^2-2x=0
=) x(3x-2)=0
=) x=0 hoặc 3x-2=0 =) 3x=2 =) x=2/3
=) x=0 hoặc x=2/3 là ngiệm của đa thức P(x)
Khi P (x) = 0
=> \(3x^2-2x=0\)
=> \(3x\left(x-\frac{2}{3}\right)=0\)
=> \(\orbr{\begin{cases}3x=0\\x-\frac{2}{3}=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)
Vậy P (x) có 2 nghiệm: x1 = 0; x2 = \(\frac{2}{3}\)