cm
a,A=1+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+....+\(\frac{1}{100^2}\)<2
b,B=1+\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+....+\(\frac{1}{63}\)<6
c,C=\(\frac{1}{2}\).\(\frac{3}{4}\).\(\frac{5}{6}\).\(\frac{7}{8}\)...\(\frac{9999}{10000}\)<\(\frac{1}{100}\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}< 2\left(đpcm\right)\)