K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ∆AHD có : 

AB là trung trực DH 

=> ∆AHD cân tại A 

=> AD = AH(1)

Xét ∆AHE có : 

AI là trung trực HE 

=> ∆AHE cân tại A 

=> AH = AE (2)

Từ (1) và (2) => AD = AE 

=> ∆ADE cân tại A

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IMa. Tính góc BACb.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau3)Cho tam giác ABC. Ở...
Đọc tiếp

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IM
a. Tính góc BAC
b.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH

2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau

3)Cho tam giác ABC. Ở phía ngoài tam giác ấy vẽ tam giác đều ACE. Trên nửa mặt phẳng chứa C có bờ AB, vẽ tam giác đều ABD. Gọi H, K, M theo thứ tự là trung điểm của AB, AE, CD. Chứng minh rằng HKM là tam giác đều

4)Cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng EF=1/2CD

0
5 tháng 3 2020

Bạn tự vẽ hình nha!

a) Vì tia OH là tia phân giác của \(\widehat{xOy}\)

\(\Rightarrow\) \(\widehat{xOH}\)=\(\widehat{yOH}\)hay \(\widehat{AOH}\)=\(\widehat{BOH}\)\((\)vì A\(\in\)Ox,B\(\in\)Oy\()\)

Xét tam giác AOH và tam giác BOH, có:

         \(\widehat{AOH}\)=\(\widehat{BOH}\)

          OH chung

           \(\widehat{OHA}\)=\(\widehat{OHB}\)(=\(^{90^0}\))

\(\Rightarrow\)Tam giác AOH= Tam giác BOH (g-c-g)

\(\Rightarrow\)\(\hept{\begin{cases}HA=HB\\OA=OB\end{cases}}\)

Vậy....

5 tháng 4 2020

Phần b,c,d,e đâu rồi hả bạn Ngọc Ánh 

31 tháng 10 2021

a: Xét ΔAHE có 

AI là đường cao

AI là đường trung tuyến

Do đó: ΔAHE cân tại A

Suy ra: AE=AH(1)

Xét ΔAHF có 

AK là đường cao

AK là đường trung tuyến

Do đó: ΔAHF cân tại A

Suy ra: AF=AH(2)

Từ (1) và (2) suy ra AF=AE

31 tháng 10 2021

a, Vì AI là đg cao và trung tuyến tg AHE nên tg AHE cân tại A \(\Rightarrow AE=AH\)

Vì AK là đg cao và trung tuyến tg AHF nên tg AHF cân tại A \(\Rightarrow AF=AH\)

Vậy \(AE=AF\)

b, Vì AI, AK là đg cao của 2 tg cân nên chúng cũng là phân giác của 2 tg đó

\(\Rightarrow\widehat{EAF}=\widehat{EAH}+\widehat{HAF}=2\left(\widehat{KAH}+\widehat{IAH}\right)=2\cdot\widehat{BAC}=120^0\)

Vì \(AE=AF\) nên tg AEF cân tại A

Vậy \(\widehat{AEF}=\widehat{AFE}=\dfrac{180^0-\widehat{EAF}}{2}=30^0\)

đường cao là đường gì thế ạ ??

 

a, Xét tam giác AHE và ABH có :

\(+,\widehat{AEH}=\widehat{AHB}=90^0\)

\(+,\widehat{HAB}chung\)

Vậy tam giác \(AHE~ABH\left(g.g\right)\)

b,

Theo hệ thức lượng trong tam giác vuông ta có :

\(AH^2=AE.AB=AF.AC\)

Vậy \(\frac{AE}{AC}=\frac{AF}{AB}\left(1\right)\)

Xét tam giác AEF và ACB có :

\(+,\)góc A chung

\(+,\left(1\right)\)

\(\Rightarrow\Delta AEF~ACB\left(c.g.c\right)\)

c, Tự làm nhé