Tính:
1+ ( 1+ 2)+ ( 1+ 2+ 3)+.....+( 1+ 2+ 3+....+98)/1. 98+ 2.97+ 3. 96+......+98.1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số bị chia gồm 98 tổng, số 1 có mặt ở 98 tổng , số 2 có mặt ở 97 tổng, số 3 có mặt ở 96 tổng, số 4 có mặt ở 96 tổng…, số 97 có mặt ở 2 tổng, số 98 có mặt ở 1 tổng.
Do vậy số bị chia bằng 1.98+2.97+3.96+…+98.1 bằng số chia. Vậy B = 1
Ta có: trong dãy phân số, tử có 98 số 1, 97 số 2, 96 số 3,..., 1 số 98.
=> tử=1.97+2.98+...+98.1
Vì tử=mẫu nên khi ta rút gọn, ta được 1.
=> 1+(1+2)+...+(1+2+3+...+98)/1.98+...+98.1=1
a)\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+98\right)}{1.98+2.97+3.96+....+98.1}\)
\(=\frac{\left(1+1+....+1\right)+\left(2+2+...2\right)+....+\left(97+97\right)+98}{ }\)
\(=\frac{1.98+2.97+3.96+....+97.2+98.1}{1.98+2.97+3.96+....+98.1}=1\)
\(\text{Đặt C = 1.2 + 2.3 + 3.4 + ..... +98.99 }\)
\(\text{ Và A = 1.98 + 2.97 + 3.96 + .... + 98.1 }\)
\(\text{Khi đó : }A=1+\left(1+2\right)+....+\left(1+2+...+98\right)\)
\(=\frac{1.2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+....+\frac{98.99}{2}\)
\(=\frac{1.2+2.3+3.4+....+98.99}{2}=\frac{C}{2}\)
\(\Rightarrow B=\frac{B}{\frac{2}{B}}=\frac{1}{2}\)