A=\(\frac{3}{1.2.3}\)+ \(\frac{3}{2.3.4}\)+\(\frac{3}{3.4.5}\)+ ... +\(\frac{3}{2015.2016.2017}\). So sánh A với 1.
Giúp mình gấp bài toán này nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{2015.2016.2017}\)
\(A=\frac{3}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{3}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+\frac{3}{2}.\left(\frac{1}{3.4}-\frac{1}{4.5}\right)+...+\frac{3}{2}.\left(\frac{1}{2015.2016}-\frac{1}{2016.2017}\right)\)
\(A=\frac{3}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\right)\)
\(A=\frac{3}{2}.\left(\frac{1}{1.2}-\frac{1}{2016.2017}\right)\)
\(A=\frac{3}{4}-\frac{3}{2.2016.2017}< 1\)
Ta có :
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)
\(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2014.2015.2016}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2015.2016}\)
\(\Rightarrow A=\left(\frac{1}{2}-\frac{1}{2015.2016}\right):2\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{2015.2016}\)
\(\Rightarrow A< \frac{1}{4}\)
Vậy A < \(\frac{1}{4}\)
_Chúc bạn học tốt_
Ta có:
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{2014+2015+2016}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+.....+\frac{2}{2014.2015.2016}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
\(2A=\frac{1}{1.2}-\frac{1}{2015.2016}\)
\(\Rightarrow2A< \frac{1}{1.2}=\frac{1}{2}\)
\(\Rightarrow A< \frac{1}{4}\)
Vậy ....
A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2015.2016.2017}\)
\(\Leftrightarrow\)A=\(\frac{1}{1}-\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}-\frac{2}{2017}\)
\(\Leftrightarrow\)A=\(\frac{1}{1}-\frac{1}{2017}\)
\(\Leftrightarrow\)A=\(\frac{2016}{2017}\)
mk quên:Có \(\frac{2016}{2017}< \frac{1}{4}\) \(\Rightarrow\)S<\(\frac{1}{4}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)
\(A=\frac{1}{2}.\frac{370}{741}\)
\(A=\frac{185}{741}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}\right)\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)
Tự tính tiếp nha =)) mỏi tay quá
\(M=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{100.101.102}\right)\)
\(M=\frac{1}{2}.\left(1-\frac{1}{102}\right)\)
\(M=\frac{101}{204}< 1\left(đpcm\right)\)
Ta có: M=11.2.3 +12.3.4 +13.4.5 +...+1100.101.102
M=2.(11.2.3 +12.3.4 +13.4.5 +...+1100.101.102 ).12
M=(21.2.3 +22.3.4 +23.4.5 +...+2100.101.102 ).12
M=(11.2 -12.3 +12.3 -13.4 +13.4 -14.5 +...+1100.101 −1101.102 ).12
M=( 11.2 −1101.102 ).12
Mà 11.2 −1101.102 <1
Và 12 <1
=> (11.2 −1101.102 ) .12 <1
=> M <1
nhớ 9 k đó2A=\(\frac{2}{1\cdot2\cdot3}\)+\(\frac{2}{2\cdot3\cdot4}\)+\(\frac{2}{3\cdot4\cdot5}\)+...+\(\frac{2}{2014\cdot2015\cdot2016}\)
2A=\(\frac{1}{1\cdot2}\)-\(\frac{1}{2\cdot3}\)+\(\frac{1}{2\cdot3}\)-\(\frac{1}{3\cdot4}\)+\(\frac{1}{3\cdot4}\)-\(\frac{1}{4\cdot5}\)+...+\(\frac{1}{2014\cdot2015}\)-\(\frac{1}{2015\cdot2016}\)
2A=\(\frac{1}{2}\)-\(\frac{1}{2015\cdot2016}\)
A=(\(\frac{1}{2}\)-\(\frac{1}{2015\cdot2016}\)):2
A=\(\frac{1}{2}\):2-\(\frac{1}{2015\cdot2016}\):2
A=\(\frac{1}{4}\)-\(\frac{1}{2015\cdot2016\cdot2}\)<\(\frac{1}{4}\)
Vậy A<\(\frac{1}{4}\)
* Công thức : \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\left(\frac{3}{6}-\frac{1}{6}\right)=\frac{1}{2}.\frac{2}{6}=\frac{1}{6}=\frac{1}{1.2.3}\)
\(A=\frac{3}{1.2.3}+\frac{3}{2.3.4}+...+\frac{3}{2015.2016.2017}\)
\(\Rightarrow A=3.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2015.2016.2017}\right)\)
\(\Rightarrow A=3.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\right)\)
\(\Rightarrow A=3.\left(\frac{1}{1.2}-\frac{1}{2016.2017}\right)\)
\(\Rightarrow A=3.\left(\frac{1}{2}-\frac{1}{4066272}\right)\)
\(\Rightarrow A=3.\left(\frac{2033136}{4066272}-\frac{1}{4066272}\right)\)
\(\Rightarrow A=3.\frac{2033135}{4066272}>3.\frac{1355424}{4066272}\)
\(\Rightarrow A>3.\frac{1}{3}\)
\(\Rightarrow A>1\)
Chúc bạn học tốt !!!
Thanks bạn Hỏa Long Natsu