K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2016

Đè của bạn vô lý

a: \(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)

b: Xét tứ giác ABCD có

M là trung điểm của AC

M là trung điểm của BD

Do đó; ABCD là hình bình hành

Suy ra: AB=CD và AB//CD
hay AC⊥CD

A B C M E  

Con chỉ vẽ minh họa đc thôi, bác vẽ ^A vuông hộ con.

a, Xét \(\Delta\)ABM và \(\Delta\)CEM ta có 

^M _ chung 

BM = ME (gt)

^B = ^E (sole trog) 

=> \(\Delta\)ABM = \(\Delta\)CEM (c.g.c) 

17 tháng 12 2022

a: Xét ΔABM và ΔCDM có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔABM=ΔCDM

b: ΔABM=ΔCDM

nên AB=CD và góc ABM=góc CDM

=>AB//CD

=>CE vuông góc với AC

=>AC vuông góc DE

13 tháng 4 2019

help me > _ <

2 tháng 1 2021

undefined

a)Xét ΔAMB và ΔDMC có:

AM=MD(gt)

BM=MC(M là trung điểm của BC)

góc AMB=góc DMC

⇒ΔAMB = ΔDMC(c.g.c)

b)Vì ΔAMD= ΔDMC(cm câu a)

⇒góc BAM = góc CDM(2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

⇒AB//CD(đpcm)

c)Vì góc BAM=1/3 góc ABM nên góc BAM=1/3.120*=40*

Mà góc BAM = góc CDM(cm câu b)

⇒góc CDM=40*

Vậy CDM=40*

❏Dấu'' * ''là độ nhé

 

 

 

2 tháng 1 2021

\(\text{Phần a, theo mình phải là chứng minh(CM)}\Delta AMB=\Delta DMC\text{ chứ?}\)

\(\text{AMD là một đường thẳng mà đâu phải là tam giác đâu bạn}\)

undefined

\(a,CM:\Delta AMB=\Delta DMC\)

\(\text{Do M là trung điểm của BC}\Rightarrow MB=MC\)

\(\text{Xét }\Delta AMB=\Delta DMCcó:\)

\(MA=MB\left(gt\right)\left(1\right)\)

\(\widehat{AMB}=\widehat{DMC}\left(\text{đối đỉnh}\right)\left(2\right)\)

\(MB=MC\left(cmt\right)\left(3\right)\)

\(\text{Từ (1), (2) và (3)}\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\left(đpcm\right)\)

\(b,CM:\text{AB//CD}\)

\(\text{Do }\Delta AMB=\Delta DMC\left(\text{câu a}\right)\)

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\left(\text{2 góc tương ứng}\right)\)

\(\text{Hay }\widehat{ABC}=\widehat{DCB}\left(4\right)\)

\(\text{Mà 2 góc này ở vị trí so le trong của 2 đường thẳng AB và CD}\left(5\right)\)

\(\text{Từ (4) và (5)}\Rightarrow\text{AB//CD}\left(\text{dấu hiệu nhận biết}\right)\left(đpcm\right)\)

\(c,\widehat{MDC}=?\)

\(\widehat{BAM}=\dfrac{1}{3}\widehat{ABM}\left(gt\right)\Rightarrow3.\widehat{BAM}=\widehat{ABM}\)

\(\text{Xét }\Delta AMB\text{ có }\widehat{AMC}\text{ là góc ngoài:}\)

\(\Rightarrow\widehat{ABM}+\widehat{BAM}=\widehat{AMC}\left(\text{tính chất góc ngoài}\right)\)

\(\text{Mà }\widehat{AMC}=120^o\left(gt\right),\text{Thay }\widehat{ABM}=3.\widehat{BAM}\)

\(\Rightarrow3.\widehat{BAM}+\widehat{BAM}=120^o\)

\(\Rightarrow4.\widehat{BAM}=120^o\)

\(\Rightarrow\widehat{BAM}=30^o\)

\(\text{Do }\Delta AMB=\Delta DMC\left(\text{câu a}\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{MDC}\left(\text{2 góc tương ứng}\right)\left(6\right)\)

\(\text{Mà }\widehat{BAM}=30^o\left(cmt\right)\left(7\right)\)

\(\text{Từ (6) và (7)}\Rightarrow\widehat{MDC}=30^o\)

 

 

 

20 tháng 12 2022

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

=>AB//CD

=>góc ABM=góc CDM

b: Vì ABCD là hình bình hành

nên AB=CD

AB//CD

AB vuông góc với AC

Do đó: CD vuông góc với AC

=>AC vuông góc với DE

c: Xét tứ giác ABEC có

CE//AB

BE//AC

Do đó: ABEC là hình bình hành

=>CE=AB=CD

=>C là trung điểm của ED

8 tháng 7 2019

A B C M

CM :

a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:

BC2 = AB2 +  AC2

=> AB2 = BC2 - AC2 = 102 - 82 = 100 - 64 = 36

=> AB = 6 (cm)

b) Xét t/giác ABM và t/giác CDM

có: BM = MD (gt)

   \(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

  AM = CM (gt)

=> t/giác ABM = t/giác CDM (c.g.c)

=> AB = CD (2 cạnh t/ứng)

=> \(\widehat{A}=\widehat{C}\) (2 góc t/ứng)

Mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CD

c) Xét t/giác ACD

 Ta có: BC + CD > BD (bất đẳng thức t/giác)

Mà CD = AB và 2BM = BD (vì BD = BM + MD và BM = MD)

=> AB + BC > 2BM

d) Ta có: AB < BC (6 cm < 10cm)

Mà AB = CD

=> CD > BC =>  \(\widehat{MBC}< \widehat{D}\) (quan hệ giữa cạnh và góc đối diện)

Mà \(\widehat{D}=\widehat{ABM}\) (vì t/giác ABM = t/giác CDM)

=> \(\widehat{CBM}< \widehat{ABM}\)

8 tháng 3 2023

Cho tam giác ABC vuông tại A có AB<AC,đường trung tuyến AM. Trên tia đối của tia AM lấy điểm D sao cho M là trung điểm AD.

a) chứng minh tam giác MAB= tam giác MDC và DC song song với AB

b) gọi K là trung điểm AC. Chứng minh tam giác BKD cân 

c) DK cắt BC tại O. Chứng minh CO=2/3CM

d) BK cắt AD tại N. Chứng minh MK vuông góc với NO