(4x-8)(3x-6) > (4x-8)(2x+2)
Tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4
Ta luôn có: -(x - 3/2)2 \(\le\)0 \(\forall\)x
=> -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max của 3x - x2 là 9/4 tại x = 3/2
2) Ta có : -(x2 + y2) + x + 3y+ 10 = -x2 - y2 + x + 3y + 10 = -(x2 - x + 1/4) - (y2 -3y + 9/4) + 25/2 = -(x - 1/2)2 - (y - 3/2)2 + 25/2
Ta luôn có: -(x - 1/2)2 \(\le\)0 \(\forall\)x
-(y - 3/2)2 \(\le\)0 \(\forall\)y
=> -(x - 1/2)2 - (y - 3/2)2 + 25/2 \(\le\)25/2 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{3}{2}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{2}\end{cases}}\)
Vậy ...
`2//(5x-8)-3(4x-5)=4(3x-4)`
`<=>5x-8-12x+15=12x-16`
`<=>-19x=-23`
`<=>x=23/19` Vậy `x=23/19`
`3//2(x^3-1)-2x^2(x+2x^4)+(4x^5+4)x=6`
`<=>2x^3-2-2x^3-4x^6+4x^6+4x=6`
`<=>4x=8`
`<=>x=2` Vậy `x=2`
a) \(4x\left(x+1\right)=8\left(x+1\right)\)
\(\Leftrightarrow4x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\4x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\4x=8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{8}{4}=2\end{matrix}\right.\)
b) \(x^2+2x-3x-6=0\)
\(\Leftrightarrow\left(x^2+2x\right)-\left(3x+6\right)=0\)
\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
a: (x+1)(4x-8)=0
=>x+1=0 hoặc 4x-8=0
=>x=2 hoặc x=-1
b: =>x(x+2)-3(x+2)=0
=>(x+2)(x-3)=0
=>x=3 hoặc x=-2
a )
\(5x\left(4x-5\right)-4x\left(5x-6\right)=30\)
\(\Rightarrow20x^2-25x-20x^2+24x=30\)
\(\Rightarrow-x=30\)
\(\Rightarrow x=-30\)
Vậy ...
b )
\(2x\left(6-3x\right)+3x\left(2x-5\right)=12\)
\(\Rightarrow12x-6x^2+6x^2-15x=12\)
\(\Rightarrow-3x=12\)
\(\Rightarrow x=-4\)
Vậy ...
a) \(5x\left(4x-5\right)-4x\left(5x-6\right)-30\)
\(\Rightarrow20x^2-25x-20x^2+24x=30\)
\(\Rightarrow-1x=30\)
\(\Rightarrow x=-30\)
Vậy x = -30
b) \(2x\left(6-3x\right)+3x\left(2x-5\right)=12\)
\(\Rightarrow12x-6x^2+6x^2-15x=12\)
\(\Rightarrow-3x=12\)
\(\Rightarrow x=-4\)
Vậy x = -4
\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)
\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)
Bài 4:
a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)
\(\Leftrightarrow6x-9-2x+4=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
hay \(x=\dfrac{13}{3}\)
c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
hay x=1
|\(x-\dfrac{1}{2}\)| + 2\(x\) = 6
|\(x-\dfrac{1}{2}\)| = 6 - 2\(x\); 6 - 2\(x\) > 0 ⇒ 6 > 2\(x\) ⇒ \(x\) < 3
\(\left[{}\begin{matrix}x-\dfrac{1}{2}=6-2x\\x-\dfrac{1}{2}=-6+2x\end{matrix}\right.\)
\(\left[{}\begin{matrix}x+2x=6+\dfrac{1}{2}\\2x-x=6-\dfrac{1}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=\dfrac{13}{2}\\x=\dfrac{11}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{13}{6}\\x=\dfrac{11}{2}\end{matrix}\right.\)
\(x=\dfrac{11}{2}\) > 3 (loại)
Vậy \(x\) = \(\dfrac{13}{6}\)
\(\left(4x-8\right)\left(3x-6\right)>\left(4x-8\right)\left(2x+2\right)\)
\(\Leftrightarrow\)\(\left(4x-8\right)\left(3x-6\right)-\left(4x-8\right)\left(2x+2\right)>0\)
\(\Leftrightarrow\)\(\left(4x-8\right)\left(3x-6-2x-2\right)>0\)
\(\Leftrightarrow\)\(4\left(x-2\right)\left(x-8\right)>0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-2>0\\x-8>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2< 0\\x-8< 0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x>2\\x>8\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2\\x< 8\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x>8\\x< 2\end{cases}}\)
Vậy...
8 < x < 2 sao được ạ?