giải hệ :
(x+y)(y+z)=187
(y+z)(z+x)=154
(z+x)(x+y)=238
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\hept{\begin{cases}\text{(x+y)(y+z)=187}\\\text{(y+z)(z+x)=154}\\\text{(z+x)(x+y)=238}\end{cases}}\)\(\Rightarrow\)(x+y)2(y+z)2(z+x)2=187.154.238 \(\Rightarrow\) (x+y)(y+z)(z+x)=2618
\(\Rightarrow\)\(\hept{\begin{cases}z+x=14\\x+y=17\\y+z=11\end{cases}}\) \(\Rightarrow\) 2(x+y+z)=14+17+11=42 \(\Rightarrow\) x+y+z=21 \(\Rightarrow\) \(\hept{\begin{cases}y=7\\z=4\\x=10\end{cases}}\)
đặt x+y=a,y+z=b,z+y=c
hPt trở thành :ab=187,bc=154,ca=238
nhân hết 3 vế với nhau:\(a^2b^2c^2=6853924\)
Suy ra \(abc=2613\)nên c=abc:ab=2613:187=14.b và c tính tương tự
trở về ẩn cũ r giải nốt đi
Giải:
Đặt: (x + y) = a ; (y + z) = b ; (z + x) = c
HPT <=> \(\left\{{}\begin{matrix}ab=187\\bc=154\\ca=238\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{187}{a}\\\dfrac{187}{a}\cdot c=154\\c\cdot a=238\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{187}{a}\\c=\dfrac{154a}{187}\\\dfrac{154a}{187}\cdot a=238\end{matrix}\right.\) => \(154a^2=238\cdot187=44506\)
=> \(a^2=\dfrac{44506}{154}=289\Rightarrow a=\sqrt{289}=17\)
=> b = \(\dfrac{187}{17}=11\) ; c = \(\dfrac{238}{17}=14\)
Hay \(\left\{{}\begin{matrix}x+y=17\\y+z=11\\z+x=14\end{matrix}\right.\)
\(\Rightarrow x+y+y+z+z+x-17+11+14=42\)
\(\Leftrightarrow2\left(x+y+z\right)=42\Rightarrow x+y+z=21\)
=> \(\left\{{}\begin{matrix}x=21-\left(y+z\right)=21-11=10\\y=21-\left(z+x\right)=21-14=7\\z=21-\left(x+y\right)=21-17=4\end{matrix}\right.\)
Vậy ..........................
Đặt x + y = a ( a > 0 )
y + z = b ( b > 0 )
x + z = c (c > )
Khi đó hệ pt thành :
\(\left\{{}\begin{matrix}ab=187\left(1\right)\\bc=154\left(2\right)\\ac=238\left(3\right)\end{matrix}\right.\)
Nhân (1) (2) (3) vế theo vế được: abc = 2618 (4)
Lần lượt chia (4) cho (1) (2) (3) ta được:
\(\left\{{}\begin{matrix}a=17\\b=11\\c=14\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x+y=17\\y+z=11\\x+z=14\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-z=6\\x+z=14\end{matrix}\right.\Leftrightarrow x=10\Rightarrow y=7\) và \(z=4\)
Vậy nghiệm của hệ pt là (10;7;4)
\(Taco:\)
\(\left(x+y\right)\left(y+z\right)=187\Leftrightarrow xy+xz+yy+yz=187\)
\(\left(y+z\right)\left(z+x\right)=154\Leftrightarrow yz+xy+zz+xz=154\)
\(\left(z+x\right)\left(x+y\right)=238\Leftrightarrow xz+zy+xx+xy=238\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)+\left(x+z\right)\left(x+y\right)+\left(y+z\right)\left(z+x\right)=579\)
\(\Leftrightarrow xy+zx+yy+yz+yz+xy+zz+xz+xz+zy+xx+xy=579\)
\(\Leftrightarrow3\left(xz+xy+yz\right)+x^2+y^2+z^2=579\)
\(\left(z+x\right)\left(x+y\right)-\left(x+y\right)\left(y+z\right)=51\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=x^2-y^2=51\)
\(\left(z+x\right)\left(x+y\right)-\left(y+z\right)\left(x+z\right)=84\)
\(\Leftrightarrow\left(x+z\right)\left(x-z\right)=84\Leftrightarrow x^2-z^2=84\)
\(\Leftrightarrow y^2-z^2=33\)
đến đây tịt
\(\hept{\begin{cases}\left(x+y\right)\left(x+z\right)=8\left(1\right)\\\left(x+y\right)\left(y+z\right)=16\left(2\right)\\\left(x+z\right)\left(z+y\right)=32\left(3\right)\end{cases}}\)
Nhân các phương trình (1) , (2) , (3) theo vế ta được : \(\left[\left(x+y\right)\left(y+z\right)\left(x+z\right)\right]^2=4096\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=64\)hoặc \(\left(x+y\right)\left(y+z\right)\left(z+x\right)=-64\)
1. Với (x+y)(y+z)(z+x) = 64 , từ (1) , (2) , (3) suy ra \(\hept{\begin{cases}x+y=2\\y+z=8\\z+x=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=3\\z=5\end{cases}}\)
2. Với (x+y)(y+z)(z+x) = -64 , từ (1) , (2) , (3) suy ra : \(\hept{\begin{cases}x+y=-2\\y+z=-8\\z+x=-4\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\\z=-5\end{cases}}}\)
Vậy nghiệm của hệ là : \(\left(x;y;z\right)=\left(-1;3;5\right);\left(1;-3;-5\right)\)
(x+y)(x+y+z)+(y+z)(x+y+z)+(z+x)(x+y+z)=189+147+546
(x+y+z)(x+y+y+z+z+x)=882
(x+y+z)(2x+2y+2z)=882
(x+y+z)2(x+y+z)=882
2(x+y+z)2=882
(x+y+z)2=882:2
(x+y+z)2=441
x+y+z=21
(x+y)(x+y+z)=189 => x+y=189:21=9
(y+z)(x+y+z)=147 => y+z=147:21=7
(z+x)(x+y+z)=546 => z+x=546:21=26
x+y=9; x+y+z=21 => z=21-9=12
y+z=7; x+y+z=21 => x=21-7=14
z+x=26; x+y+z=21 => y=-5
Vậy x=14; y=-5; z=12
PT (1) <=> (x + 1)(y + 1) = 2 PT (2) <=> (y + 1)(z + 1) = 6 PT (3) <=> (z + 1)(x + 1) = 3
Do đó: \(x+1=\frac{2}{y+1}\) (y khác -1) và \(x+1=\frac{3}{z+1}\) (z khác -1) . Từ đó suy ra:\(\frac{2}{y+1}=\frac{3}{z+1}\Leftrightarrow2z+2=3y+3\Leftrightarrow2z-3y=1\)
\(\Rightarrow z=\frac{3y+1}{2}\)(*). Thay (*) vào PT (2) ta có: \(\frac{3y^2+y}{2}+y+\frac{3y+1}{2}=5\Leftrightarrow3y^2+6y-9=0\Leftrightarrow3\left(y+1\right)\left(y-3\right)=0\). Do đó y = -1 (loại) hoặc y = 3
y = 3 => 2z = 1 + 3y = 10 => z = 5 => \(x=\frac{2}{y+1}-1=-\frac{1}{2}\)
Vậy nghiệm của hệ PT đã cho là \(x=-\frac{1}{2}\); y = 3 và z = 5